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importance in children’s lives need

to be questioned and thoroughly in-
vestigated.
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Color Constancy: From PhySIcs

to Appearance

David H. Brainard, Brian A. Wandell and

Eduardo-Jose Chichilnisky

Vision provides information
about objects. Computing informa-
tion about objects is difficuit, how-
ever, because there is no simple
mapping between an object’s intrin-
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sic properties and the corresponding

- retinal image. An object’s retinal im-

age confounds the object’s proper-
ties and extrinsic factors such as the
object’s location, orientation, and il-
lumination. A visual representation
that provides reliable information
about objects must compensate for
these extrinsic factors.

in the case of object color, the
retinal image depends not only on
the object’s intrinsic surface reflec-
tance but also on the properties of
the illumination. The ability of the
visual system to maintain an object’s
color appearance across variations
in illumination is called color con-
stancy. Color constancy is an exam-
ple of a larger class of perceptual
constancies (e.g., size constancy
and shape constancy) that together

allow people to perceive a stable

physical world. A detailed charac-
terization of color constancy may
provide insights that generalize to

-other perceptual systems.
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To what extent can an ideai sys-
tem be color constant? To answer
this question, we analyze the phys-
ics of retinal image formation. The
top of Figure 1 shows an illuminant
reflected from a surface toward an
observer. The illuminant’'s spectral
power distribution, £(A), specifies
the amount of power in the illumi-
nant at each wavelength. The sur-
face’s spectral reflectance function,
S(\), specifies the fraction of inci-
dent power reflected at each wave-
length. The spectral power distribu-
tion of the light arriving at the
observer’'s cornea, which we call the
color signal, is C(A) = E(A) S(N).

The retina contains three distinct
classes of light-sensitive photorecep-
tors: the long-wavelength-sensitive
(L}, middle-wavelength-sensitive
(M), and short-wavelength-sensitive
(S} cones. The classes are distin-
guished by the type of photopigment
molecules they contain. The
amounts of light absorbed by the
three types of photopigment (the
cone quantum catches) provide the
information available to the visual
system about the color signal.

Figure 1 illustrates why it is diffi-
cult to recover illuminant and sur-
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Fig. 1. The physics of image formation. The illuminant, E(A), is reflected from a surface,

S(\), to form the color signal, C(A). The information available to the observer about the
color signal is the triplet of quantum catches for the three classes of cones. We use the

symbol r to represent this triplet. The bottom of the figure shows two illuminant-surface

pairs that result in the same color signal.

~ face properties from the retinai im-
age. First, consider the information
about a surface available in the color
signal at a single image location. In
general, surface recovery is not pos-
sible: The color signal confounds the
illuminant’s spectral power distribu-
tion and the surface’s reflectance
function. Any color signal C(A) can

be factored into an arbitrary surface

reflectance function, S(A), and a
compatible ifluminant, E(\) = CA)Y/
S(A).

The ambiguity is shown con-
cretely at the bottom of Figure 1,
where we depict two illuminant—
surface pairs that result in the same
color signal. Even an ideal visual
system cannot determine with cer-
tainty which pair is actually present.
To resolve the ambiguity, the visual
system must assume that some prior
constraints govern which illumi-
nants and surfaces are likely to occur
in natural images. it may be the case
that illuminant spectral power distri-
butions similar to E,(A) or surface re-

flectance functions similar to 5,(A)
are rare. |n this case, the visual sys-
tem would do well to factor the de-
picted color signal into illuminant
F.(\) and surface S(\) rather than
into illuminant E,(\) and surface
52(N).
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The goal of a growing body of
theoretical research is to identify a
plausible set of prior constraints that
are sufficient to allow the visual sys-
tem to identify surface reflectance
from the cone quantum catches.’
The idea that unifies this research is
that small-dimensional linear mod-
els may be used to describe which
iluminant and surface functions are
likely to occur in natural images.
Linear models approximate spectral
data as weighted sums of a small

" number of fixed basis functions.

Published by Cambridge University Press

The number of basis functions
used in a linear model is called the
dimension of the model. This no-
menclature emphasizes the fact that
basis functions may be interpreted as
describing the dimensions along
which spectra may vary. The insert
in Figure 2 shows the basis functions
for a three-dimensional linear model
for surfaces. The first basis function
reflects fairly evenly across the visi-
bie spectrum. By varying the weight
assigned to this basis function, we
can capture variation in overall re-
flectance from one surface to an-
other. The second basis function
reflects positively at the long-
wavelength end of the spectrum and
negatively at the short-wavelength
end. By assigning a positive weight
to this basis function, we capture the
fact that some surfaces (e.g., red
ones) reflect best at longer wave-
fengths. By assigning a negative
weight to this basis function, on the
other hand, we can capture the fact
that some surfaces (e.g., green ones)
reflect best at the middle and short

‘wavelengths. The third basis func-
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Fig. 2. Linear model approximations.
The main plot shows the fit of a linear
model approximation (solid line) to a
surface reflectance function (open
squares). The inset shows the three basis
functions of the linear model. These are
normalized versions of the functions re-
ported by Cohen.? The approximation
was obtained by combining the three ba-
sis functions with weights of 0.53, 0.14,
and —0.06, respectively.
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tion, which reflects positively in the
middle region of the spectrum and
negatively at either end, shows an-
other dimension along which sur-

 face reflectances within the maodel

can vary.

The basis functions shown in Fig-
ure 2 were obtained by performing a
principal components analysis of the
reflectance functions of a large set of
colored papers.? Similar analyses
have been performed for spectral
power distributions of measured
daylight.” The results indicate that
linear models with a small number
of basis functions provide an excel-
lent description of naturally occur-
ring spectra. Figure 2 shows a three-
dimensional approximation to a
typical surface reflectance function.

Linear models provide a formal
description of prior constraints on il-
luminant and surface functions.
Rather than being free to vary arbi-
trarily at each wavelength in the vis-
ible spectrum, functions constrained
by linear models can vary only along

the dimensions represented by the

basis functions. Once the number of

dimensions and basis function spec-

tra for a linear model have been de-
termined, an individual spectrum
within the model is specified com-
pletely by the weights required to
form it.
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If we make the assumption that
linear models describe the illumi-
nant and surface spectral functions,

it is possible to estimate these func-

tions from the cone quantum

catches. As an example, we de-
scribe one estimation algorithm,
which we refer to as the subspace
method.? In addition to the linear
model constraint, this method is

CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE

two stages. First, it estimates the
spectral power distribution of the
common illuminant. Then it uses
this estimate to deduce the surface
reflectance function at each image
location. The method is easiest to
understand when the surface reflec-
tance functions are constrained by a
two-dimensional linear model. In
this case, any individual surface may
be represented by a point in a two-
dimensional space. The coordinates
of the point specify the weights re-
quired to reconstruct the surface re-
flectance function from the basis
functions. The top of Figure 3 shows
such a two-dimensional representa-
tion for a hypothetical collection of
surfaces.

When a surface is illuminated,
the resulting color signal is coded by
the visual system as a triplet of quan-
tum catches, one for each class of
cone. We can represent these quan-
tum catches using a three-
dimensional quantum catch space.
The coordinates of a point in this
space specify the L, M, and S cone

quantum catches. The two plots at
the bottom of Figure 3 show the
quantum catches from the entire col-
lection under two hypothetical illu-
minants, £; and £,. In both of these
plots, the ensemble of quantum
catches from the entire collection of
surfaces lies within a plane. But the
particular plane that the surfaces are
mapped into depends on the illumi-
nant: The planes in the two plots are
different.

The subspace method operates by
identifying the plane that best fits the
quantum catches and using this
plane to identify the illuminant. For
a fixed illuminant, the plane is in-
variant with respect to the choice of
the surfaces in the image. Infor-
mally, one can think of the identifi-
cation procedure as associating an
iHluminant with each possible plane
in the quantum catch space. Once
the illuminant has been identified,
the algorithm processes the quantum
catches at each location to identify
the corresponding surface.

Why does the method work? The

il el

Fig. 3. The idea underlying the subspace method. The plot at the top represents a
collection of surfaces within a two-dimensional {inear model. The two plots at the
bottom represent the quantum catches from the collection of surfaces under two dif-
ferent itluminants. The figure is illustrative and does not represent the results of actual
calculations. After Maloney and Wandell.*

based on the assumption that a col-
lection of surfaces is lit by a com-
mon illuminant.

The subspace method operates in

Copyright @ 1993 American Psychological Society



key observation is that each illumi-
nant maps the collection of surfaces
into a plane in the quantum catch
space. This follows because there is
considerabie structure in the relation
between iiluminants, surfaces, and
cone quantum catches. In particu-
lar, varying either the illuminant
spectral power distribution or the
surface reflectance has a linear effect
on the cone quantum catches, a
property called bilinearity (see Fig.
4), Because of bilinearity, the map-
ping between surfaces and quantum
catches is [inear when the illuminant
is held fixed. Since linear transfor-
mations always map planes into
planes, the two-dimensional collec-
tion of surfaces must end up as a
plane in the quantum catch space.
Bilinearity is also central to a rigor-
ous analysis of when it is guaranteed
that distinct illuminants map the col-
lection of surfaces to distinct
planes.’

VOLUME 2, NUMBER 5, OCTOBER 1993

For a trichromatic visual system,
our analysis applies rigorously when
the surfaces are constrained to lie
within a two-dimensional linear
model. But the principle of identify-
ing the illuminant by examining how
the quantum catch data cluster is
quite general. When the data do not
lie exactly in a plane, it may be pos-
sibie to use other measures of how
the data cluster to estimate the illu-
minant. Early color constancy algo-
rithms estimated the illuminant on
the basis of the mean quantum catch
from a collection of surfaces, but
these methods are not robust with
respect to the choice of surfaces in
the image.® The subspace method
demonstrates that important infor-
mation about the illuminant is car-
ried by the higher order statistics of
the ensemble of quantum catches
(e.g., the best-fitting plane). We be-
lieve that this basic insight will lead
to algorithms that operate effectively
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Fig. 4. The bilinear relation between illuminants, surfaces, and quantum catches. The
top row shows the color signal and cone quantum catches when an illuminant E,
reflects from a surface S. The middle row shows the color signal and cone quantum
catches when a second illuminant, £,, reflects from the same surface. The bottom row
itlustrates that when the sum E, + E, reflects from the surface, the color signal is the
sum C, + C,. Because photopigment absorption is a linear process, we can extend this
statement to the level of the cone quantum catches. The quantum catches under £, +
E, are the sum r; + r, of the quantum catches under £, and £, individually. The
symmetric roles of illuminants and surfaces in image formation permit us to show that
the cone quantum catches are also linear with respect to sums of surface reflectance

functions.
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even when the surfaces are not
strictly constrained to a two-
dimensional linear model. Similar
insight has aiready proved useful for
solving other computational vision
problems.”

“~ COLOR APPEARANCE
-7 EXPERIMENTS -«

The theoretical work on color
constancy has important implica-
tions for the study of human color
vision. Indeed, we have organized
our experimental work using three
ideas taken from the theory. Two of
these ideas indicate how to choose
experimental conditions that allow
color constancy: (a) The illuminant
and surface functions shouid be con-
strained by small-dimensional linear
models, and (b) the images should
contain multiple surfaces viewed
under a common illuminant. The
third idea is the bilinear nature of the
physical relation between illumi-
nants, surfaces, and quantum
catches. We analyzed our data to
test whether the psychological rela-
tion between illuminants, surfaces,
and color appearance is consistent
with bilinearity.

Cross-llluminant Color Matching

We measured how color appear-
ance depends on the illuminant us-
ing an asymmetric color-matching
task, which we have described in
detail elsewhere.® Subjects viewed a
computer display consisting of a
simulation of matte surfaces under a
standard illuminant typical of day-
ight. In each session, we trained
subjects to remember the color ap-
pearance of a single test surface un-
der the standard illuminant. We then
had subjects set color matches to the
test surface from memory. On con-
trol trials, subjects set matches while
the illuminant was left unchanged.
On test trials, subjects set matches
under a different itluminant. The
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Fig. 5. Test of bilinearity as a mode! of
human performance. The predicted
cone quantum catches for a collection of
asymmetric matches, computed under
the constraint of bilinearity, are plotted
against the corresponding measured
cone guantum catches. The data were
collected using our cross-illuminant
matching procedure. The three symbol
types indicate the results for the L, M,
and S cones, If the bilinear mode! held
perfectly, all the points would lie along
the diagonal.

control matches measured the sub-
jects’ ability to remember the color
of the test surface, while the test
matches measured the effect of the
“illumination change. Qur experi-
mental design incorporated the
ideas taken from the theoretical
analysis. We used many surfaces in
our displays, and we simulated illu-
minants and surfaces whose spectral
functions are well described by
small-dimensional linear models.

The Bilinear Structure of
Cross-llluminant Color Matches

We were particularly interested in
whether color appearance judg-

ments exhibit the same bilinear

structure that emerged from the
analysis of illuminant and surface re-
covery. To see how bitinearity might
be reflected in the color appearance
data, consider the foilowing experi-
mental conditions. Suppose the ob-
server makes matches for two sepa-
rate illuminant changes AE; and
AE,. If color appearance foliows the

bilinear structure, we should be able
to predict the match to the sum of
the illuminant changes, AE; + AE,.
The bilinear model also makes pre-
dictions for the effect of varying the
surface reflectance when the illumi-
nant change is held fixed.?® We
used our cross-itluminant matching
data to check whether a bilinear
model describes human perfor-
mance. The results, summarized in
Figure 5, support bilinearity.

The bilinearity of cross-illuminant
matching data has an important con-
sequence for theories of color ap-
nearance. Suppose the surfaces and
Hluminants are described by smail-
dimensional linear models. By mea-
suring the effect of variation along
the illuminant linear model dimen-
sions on the color appearance of the
surface linear model! bases, we can
determine the parameters of the bi-
linear transformation. Now suppose
we wish to know the color appear-
ance of a test surface under some
iHuminant. We can use the bilinear

transformation to find a surface un-
der a standard, canonical illuminant
whose color appearance matches
that of the test surface. Studies of
color naming and ordering proper-
ties need be carried out only under
the standard canonical itlluminant.
Bilinearity permits a great reduction
in the number of measurements nec-
essary to characterize color appear-
ance.

How Color ConStant
Are Observers?

We can use our cross-iliuminant
matching data to evaluate how well
observers discount the iiluminant
change. Suppose we assume that
when the subject sets a cross-
itluminant match, he or she believes
that the surface retlectance function
of the simulated object is identical to
the surface reflectance function of
the originai. Under this assumption,
we can estimate from the matching
data the illuminant change that the
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Fig. 6. Equivalent iiluminant representation of our cross-illuminant matching data. The
solid lines piot the spectral power distribution of four different experimental illuminant
changes. The connected points show the spectral power distribution of the correspond-
ing equivalent illuminant change. Each equivalent illuminant change is computed from
a single cross-illuminant match. If subjects were perfectiy color constant, the two spec-
tral power distributions would coincide.
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subject must have perceived. We not photopigment absorption
call the subject’s perceived change matches. Rather, our experiments
the equivalent iffuminant change. measured equivalence at a later
Figure 6 plots the experimental and point in the visual pathways. We
equivalent illuminant change for can explain our results by assuming
four experimental conditions. The that the only effect of changing the
figure illustrates that the equivalent tllumination is to scale the signais
illuminant change is similar in rela- initiated by the cone quantum
tive spectral power distribution to catches. This is often referred to as
the experimental illuminant change, von Kries adaptation.'? What is new
but that it is not as large: Our sub- about our resuits is how these scale
jects show partial color constancy.” factors are related to the illuminant:
Perhaps observers are always Our results suggest that the sensitiv-
only partially color constant. But our ity of each cone ciass is inversely
experiments measured performance proportional to a linear function of
for rather simple scenes. These the ilfluminant.® This in turn suggests
scenes do contain sufficient informa- that early gain control mechanisms
tion for complete color constancy, share a common guantitative struc-
but in natural images observers may ture with illuminant and surface re-
use other kinds of information as covery algorithms. The study of
well. Our approach can be used to physiological gain control may ben-
organize the study of color appear- efit from understanding its role in de-
ance in richer scenes. The key hy- termining color appearance.
pothesis is that the illuminant con-
trols the relation between guantum .
catches and color appearance. Acknowledgments—We thank M. .
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