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Introduction

We typically specify color images by a triplet of red, green,
and blue (RGB) values at each pixel on a rectangular sam-
pling grid. This representation is not, however, avatlable
directly from the output of many color CCD cameras. Rather,
these cameras provide only single photosensor response at
each pixel. Color information comes because the camera as
a whole contains multiple classes of photosensors, with each
class characterized by a distinct spectral sensitivity. Usually
there are three classes, referred to as red (R), green (G), and
blue (B). Fig. 1 provides a schematic illustration of this
design.

Figure 1. Color CCD camera. Left: The CCD camera contains a
rectangular array of sensors. Each sensor has eitheran R, G, or B
spectral sensitivity. Right: We may think of the overall sensor
array as three interleaved subarrays. Each subarray corresponds
to one of the three sensor classes. Note that although the overall
geometry of the array is rectangular, this is not the case for the
individual subarrays. '

To obtain a full color image, we must reconstruct at each
pixel the responses of the two missing sensor classes. I call
this polychromatic reconstruction. Polychromatic reconstruc-
tion generalizes the classic problem of reconstructing sig-
nals from samples.!

The fundamental result for regular one-dimensional,
monochromatic sampling is that a signal may be recon-
structed from samples if it contains no frequency compo-
nents greater than the Nyquist limit of the sampling array.!
The Nyquist limit is defined as half the sampling rate. Sig-
nal components at frequencies above the Nyquist limit can-
not be distinguished from lower frequency components, as
lustrated in Fig. 2. When standard methods are used, high
frequency components are reconstructed at lower frequen-
cies. This phenomenon is referred to as aliasing.
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Figure 2. Aliasing. The figure plots the intensity profile of two
one-dimensional sinusoids with spatial frequencies of 2 c/image
(dashed) and 6 c/image (solid). The gratings are sampled by a
one-dimensional array of 8 sensors. The sensor positions are indi-
cated by the cones at the top of the figure. The Nyquist limit for this
array is 4 c/image. The two gratings have the same intensities at
each sensor location. They cannot be distinguished by any recon-
struction scheme and are said to be aliases of one another. Stan-
dard low-pass filtering will reconstruct the 6 c/image grating as its
2 c/image alias.

The one-dimensional result has been extended to handle
two-dimensional sampling both for regular (see e.g. Pratt?)
and irregular’ sampling arrays. In the case of polychro-
matic sampling, however, there is additional richness. The
most straightforward approach to reconstructing full color
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images from color CCD sensor responses is to treat each
color band separately. Standard methods may then be ap-
plied to each subarray in tum. The disadvantage of this ap-
proach is that aliasing will occur when the 1image contains
spatial frequencies above the Nyquist limits of the individual
subarrays, as illustrated in Fig. 3. This sort of chromatic
aliasing can produce objectionable artifacts in images re-
corded with color CCD cameras, particularly near intensity
edges (see Fig. 4).
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Figure 3. Chromatic aliasing. The upper and lower panels plot the
R and G components of two sinusoids. One sinusoid is an intensity
grating with spatial frequency 3 c/image (solid). The R and G com-
ponents for this sinusoid are in pahse. The second sinusoid is a
red/green grating with spatial frequency 1 c/image (dashed). The
R and G componenis for this siusoid are out of phase. The sinuso-
ids are sampled by two interleaved subarrays. The R sensor posi-
tions are indicated by the shaded cones above the top panel. The G
sensor positions are indicated by the open cones above the bottom
panel. The two sinusotds produce the same responses in all of the
sensors and cannot be distinguished by any reconstruction scheme.
Low-pass filtering applied separately to each subarray will recon-
struct the 3 c/image intensity grating as its 1 c/image red/green
alias. Although the total number of sensors is the same as it was in
Fig. 2, distortion from aliasing occurs at lower spatial frequencies.
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Brute force may be used to reduce chromatic aliasing.
One possibility 1s to blur the image reaching the camera sen-
sors so that spattal frequencies above the subarray Nyquist
limits are heavily attenuated. This has the obvious disadvan-
tage that the resulting image will be blurred. An alternative
is to increase the overall sampling density of the camera sen-
sors so that the Nyquist limit for the subarrays is raised. This
has the disadvantage that it raises the cost of the camera.

A second approach is to use reconstruction methods that
are designed specifically for polychromatic sampling. Such
methods cannot restore the information lost by sampling. In
many cases, however, they can be designed to reconstruct
intensity signals accurately at spatial frequencies above
Nyquist limits of the individual subarrays. This will be pos-
sible if there is a statistical correlation between the responses
of sensors in different color classes, so that, say, the response
of an R sensor at a location contains information about how
a G sensor would have responded at that location.

My interest in polychromatic sampling began with the
observation that the human visual system is effective at re-
constructing 1mages from the responses of interleaved
subarrays of retinal cones.®’ In trying to understand how
this 1s possible, I cast the polychromatic sampling problem
in the form of a statistical decision problem: given the re-
sponses of interleaved subarrays of sensors and a model of
the statistical distribution of images, what image estimate
minimizes the expected reconstruction error? This line of
thinking led to a method that may be applied to color CCD

- camera data. In this paper, I present my analysis and show

some examples of its performance.

Polychromatic reconstruction techniques have also been
developed in the engineering community.3? These share with
my work the feature that responses from the entire sensor
array are used jointly in the reconstruction process.

Formal Development

Image representation

I represent an image by the discrete function i(x;, ¥;» Ay).
The coordinates x; (1 1N Jand y; (1 £ SN ) rep-
resent N, N.,;s evenly spaced sample locations on a rect-
angular gnd. This grid should be much denser than the sam-
pling array being studied. The A, (1 £k £N,,,) represent
the number of color bands in the image. The A, may be
evenly spaced sample wavelengths throughout the visible
spectrum, in which case the function i(x;, y;, Ay) represents
the spectrum at each image location. To simplify the discus-
sion here, we regard A'k as an indicator variable for R, G,
and B. The use of discrete representations for both spatial
position and wavelength has been discussed extensively else-

where. %10
Iuse the N, N ;s Ny is dimensional column vector i to

represent the function i(x;, ¥;, A,). The n't entry of i is
i(xi, Y!, hk) with

i =1+((n-1)moduloN,,.)
j =1+ (l(l’t——l)/N ruwsJ modulo Nculs)
k=1+ ]_(I'l-—-l)f (wachnls)j - - (O)

This choice of indexing enumerates all of the values of
the discrete function i(X;, ¥, Ay) .
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Figure 4. Chromatic aliasing at edges. The upper and lower pan-
els plot the R and G components of two signals. One signal is an
intensity step edge (solid). The R and G components of this edge
are in phase with one another. The second signal is a low fre-
quency alias of the intensity step edge (dashed). The sinusoids are
sampled by two interleaved subarrays. The R sensor positions are
indicated by the shaded cones above the top panel. The G sensor
- positions are indicated by the open cones above the bottom panel,
The two signals produce the same responses in all of the sensors.
Careful examination of the low frequency alias reveals that its R
and G components are not in phase at locations adjacent to the
edge. This alias will contain visually salient colored fringes.

Sampling

Consider the relation between the response of a single
sensor and the image data. Each sensor 1s completely char-
acterized by a polychromatic receptive field, which speci-
ties how strongly it responds to light from each color band
at each location 1n the imnage. The receptive field of a single
sensor may be described by a function s(x;, y;, A). To re-
sponse r of the sensor is given by

r= i%( S(xi: yjs l’];) i(xi’ Y_}" }'k)+ € - (1)

where e is a random variable representing sensor noise. We
can rewrite Eq. 1 as

r=si+e (2)

where the Npg. Noois Ny dimensional row vector s is the
vector representation of s(x;, y;, Ay). |
Suppose there are N, sensors in the overall camera
array, enumerated by the index m. The responses of all the
sensors can be represented by a single N ... dimensional
column vector r whose m™ entry is the response of the mt™®
sensor. LetS be the Ny.poor bY Noows Neois Nywis matrix whose
m™ row is the row vector that represents the receptive field
of the m™ sensor. Then

r=Si+e (3)

where e 1s an N, .. dimensional column vector represent-
ing sensor noise. In this paper, I assume that e is multivari-
ate Normal with mean u, and covariance K..

Eq. 3 describes the sampling process. The goal of a

reconstruction algorithm is to provide an inverse mapping,

1 = f(r), where i is an estimate of the original image i. In
this sense, the polychromatic estimation problem is an in-
verse problem. It is a linear inverse problem because, in the

absence of noise, r is a linear function of i. It is an

underdetermined inverse problem because the number of
samples is typically much smaller than the number of image
parameters to be estimated. In this paper, I adopt a Bayesian
approach to the finding an estimator f(r). Other ways to ap-
proach underdetermined linear inverse problems have been
extensively discussed (see e.g. Pratt? or Menke!D).

Bayesian Approach

The Bayesian approach to inverse problems is very
simple (see e.g. Berger'? or Brainard and Freeman'®). The
problem is defined in terms of two probability distributions
and a loss function.

The first probability distribution is the prior p(i). The
prior specifies the likelihood of encountering each possible
image. It captures what is known about images before the
sensor data are examined. Prior information is used in most
reconstruction methods. For example, low-pass filtering (i.e.
sinc mnterpolation) is based on the prior assumption that the
image contains no frequency components above the Nyquist
limit of the array. What differs in the Bayesian framework
1s that the prior information is expressed explicitly as a prob-
ability distribution. I discuss the construction of sensible
prior distributions below.

The second probability distribution p(rli) is the likeli-
hood - of the sensor data conditional on the image being
viewed. The likelihood is really a specification of the 1mag-
ing model. Here p(rli) is determined by Eq. 3 and we write

p(rii) =N(S K,) . (4)

(Given the prior and the likelihood, we may compute the
posterior distribution p(llr). The posterior specifies how
likely any given image is, conditional on the observed sen-
sor responses. The posterior is computed using Bayes’ rule:

pdiir) =p(rli) pd) . | (3)

_ The loss function L(1, i) specifies the cost of estimating
1 when the underlying image is i. Given a loss function and
the posterior, we may compute the Bayes risk

R(il r)= Ep(i 1 r){L(i, i)} (6)
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where Fi;y) denotes the expected value with respect to the
posterior. The Bayes risk specifies the expected loss for each
choice of 1, conditional on r. We choose the reconstructed
image as the particular i that minimizes the Bayes risk. In
this paper, 1 only consider the squared error loss function
L(i,i) =]i-il>. Brainard and Freeman provide some dis-
cussion on loss function choice.!?

Specifying the Prior

To find an explicit Bayesian estimator, it is necessary to
specify the prior distribution p(i). I use linear models to
construct prior distributions. I assume that each image can
be expressed as a weighted sum of N, basis images. Let
the basis images be represented specified by columns of a
N owsN cotstN wis BY Ny basis matrix B. I assume that ev-
ery image i may be expressed as a weighted sum of these
columns, so that

i=Bw . . (7)

Images constrained by Eq. 7 are said to lie within the
linear model defined by B. The N, .. dimensional vector w
contains the linear model weights.

The linear model constraint by itself does not express a

probability distribution. To turn Eq. 7 into a statement about
probability, ] assume that w is multivariate Normal with mean
u,, and covariance K. This implies that

p(i) = N(Bu,,, BK,BT) (8)

The general form of Eq. 8 captures two features of natu-
ral images. First, the average power spectrum of natural
images falls off fairly rapidly as a function of spatial fre-
quency.!*!5 Second, the signals in different color bands are
positively correlated.!> This latter observation is particular
true of the long and middle wavelength sensitive cones that
mediate human vision, because the spectral sensitivities of
these cones are very similar. 16

By choosing the basis images to be spatial sinusoids in

each color band, it is relatively straightforward to construct

K, given a) the average image power spectrum in each color
band and b) the correlation between signals in the different
color bands. The simplest case, and the only one I have
implemented, is where the spatial statistics are the same in
each color band and the color correlations are independent
of spatial location.

The general form of Eq. 8 does not capture all of the
structure in natural images. For example, Normal priors can-
not express the fact that image intensities must be positive.
None-the-less, these priors are more flexible than the assump-
tions of band-limited signals that have been used in previous
reconstruction algorithms. It seems worthwhile to investi-
gate the performance possible when such priors are assumed.
Future specification of better prior distributions may be in-
corporated within the same framework presented here.

Reconstruction
When the prior and the likelihood are both multivariate

normal, so is the posterior. Moreover, the mean and covari-
ance of the posterior may be computed in closed form. (See
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Lee'” for the derivation in the univariate case. The multi-
variate generalization is straightforward.) The estimator that
minimizes the Bayes risk for quadratic loss is exactly the
posterior mean, and using this fact we may derive that

i=Ir+i, )
with

I=BK,(RB)'((RBJK,(RB)"+ K,) " -

ip=Bwy-I(RB)u, +1u,. (10)
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Figure 5. Polychromatic reconstruction of an intensity step edge.

The upper and lower panels plot the R and G components of two
signals. One signal is an estimate of the step edge, reconstructed
using the Bayesian method described in this paper (dashed). The
sensor array is the same as in Fig. 4. The reconstruction was made
assuming a) that the camera's optics blur the incident image with a
blur standard deviation equal to one-half the overall spacing be-

tween sensors, b) that Rand G signals are correlated with a corre-

lation coefficient of 0.8, ¢} that the average amplitude spectrum of
the image population is inversely proportional to spatial frequency,

and d) that there is additive sensor noise with a standard deviation
of one percent of the mean sensor response. The optical blurring

was taken into account when simulating the sensor responses, but
no noise was added. The reconstruction shows much less chro-

matic fringing than the low frequency edge alias in Fig. 4.



Eq. 9 describes a linear estimator. The estimator is de-
termined by parameters describing the camera optics and
sensor array (R, w,, K ) and parameters describing the image
population (B, u_, K ). An advantage of the Bayesian ap-
proach is that it lets us design the reconstruction algorithm
in terms of parameters that may (in principle) be measured
or controlled.

Example

I have implemented the Bayesian polychromatic reconstruc-
tion method both for one and two-dimensional signals. Here
I show results for one-dimensional signals, which are easier
to plot. Fig. 5 shows a reconstruction of an intensity step
edge sampled by the same camera array as in Fig. 4. The
reconstruction shows much less chromatic fringing than the
edge alias shown in Fig. 4. There are three main reasons for
this. First, I have incorporated a small amount of optical
blur into the imaging model. This has the general tendency
to reduce the type of ringing seen in Fig. 4. Second, the
reconstruction algorithm is based on the assumption that the
R and G signals are correlated. This favors intensity inter-
pretations of the sensor data. Third, the reconstruction algo-
rithm 1s based on the assumption that the average image
amplitude spectrum is inversely proportional to spatial fre-
quency. This assumption is reasonable for step edges.

The good performance illustrated in Fig. 5 is achieved

at a cost. Reconstructions of less likely signals will contain.
distortion. Such distortion is inevitable for some input sig-

nals, since blurring, sampling, and noise lead to information
loss. What the Bayesian approach makes possible is im-
proved performance for likely images.

One simple way to examine reconstruction tradeoffs is
illustrated by Fig. 6. The two panels plot a measure of how
completely intensity and red/green gratings are reconstructed
for various choices of R and G sensor correlation. As the
assumed correlation increases, the intensity gratings are re-
constructed more completely while the red/green gratings
are reconstructed less completely. Apparently, the recon-
struction algorithm may be adjusted to control this tradeoff.
Fig. 6 does not, of course, provide a complete evalua-

tion of the algorithm’s performance. In addition to knowing
how completely the input signal is reconstructed, it is also
important to know the character of the distortion produced
by different reconstruction methods for different input sig-
nals. This issue will be discussed in a future paper.

Discussion

Space limitations prevent extensive discussion. I close by

noting that the method I have developed is very general. It
provides a recipe for designing optimal reconstruction algo-
rithms that handle irregular polychromatic sampling in the
presence of optical blur and sensor noise. Because the method
tailors reconstruction algorithms to the properties of the cam-

era and the 1mage population, it can be used to compare how

well different camera designs will perform. For example,
the number of sensor classes, their spectral sensitivities, the
relative numbers and placement of sensors in each class, and
the amount of optical blur are all design parameters of CCD
cameras. In Fig. 6, the correlation between R and G sensors

was treated as a reconstruction parameter for a fixed cam-
era. The same principle, however, could be used to compare
the performance of different cameras, when signals from each
are reconstructed optimally.
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Figure 6. Reconstruction tradeoffs. To generate the figure, I re-
consiructed sinusoidal gratings of unit power at a series of spatial
frequencies. The sinusoids were either intensity gratings (top panel)
or red/green gratings (bottom panel). Each line in the plots show
the power of the reconstructed signal in the same color direction
and at the same spatial frequency as the input. The different lines
in each plot are parameterized by the assumed correlation between
R and G sensors. I assumed that the camera's optics blur the inci-
dent image with a blur standard deviation equal to one-half the
overall spacing between sensors and that there is additive sensor
noise with a standard deviation of one percent of the mean sensor
response. The optical blurring was taken into account when simu-
lating the sensor responses, but no noise was added.
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