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PART IV: CONE CONTRAST AND
OPPONENT MODULATION COLOR SPACES

By David H. Brainard .
University ofCalifornia Santa Barbara, Santa Barbara, CA

Introduction

Cone excitation diagrams were introduced in Chapter 7. The
advantage of using such a color space is that cones represent the
initial encoding of light by the visual system. Because cone excita­
tion is proportional to the quantal absorption rates ofthe three types
of cone photopigments, it easier to think about how subsequent vi­
sual mechanisms combine and process cone signals. Fortunately there
is consensus on the current estimates of cone spectral sensitivities
(See Chapter 7).

The same logic that justifies the use of a cone excitation space
can be applied to develop color spaces that represent explicitly the
responses of subsequent visual mechanisms. Two ideas about the
nature of retinal processing have been widely used in this fashion.
The first is that photopigment excitations are recoded as contrast
signals, so that the information available for further processing is
provided in relative rather than absolute form. The second (as seen
in Figure 7.1) is that signals from individual classes ofcones are com­
bined into three post-receptoral channels: one summative and two
color-opponent. A color space based on the first idea alone is re­
ferred to as a cone contrast space. Color spaces based on both ideas
are referred to as opponent modulation spaces.

One widely used opponent modulation color space was introduced
explicitly by Derrington, Krauskopf, and Lennie (1984) based in part
on ideas suggested by MacLeod and Boynton (1979) and by Krauskopf,
Williams and Heeley (1982). This implementation of an opponent
modulation space is here referred to as the DKL color space. (In Chap­
ter 7 it is called the DKL cone excitation space.) Many of the ideas key
to understanding the DKL space can be understood more simply in
the context of cone contrast space. For this reason, we begin with a
discussion of cone contrast space and then build on this material to
develop the DKL space. We assume that the reader is familiar with the
mathematics of color vision as presented in Part III ofthis Appendix.

Cone Contrast Space

The use of cone contrast space (or opponent modulation space)
makes sense primarily when there is a background with respect to
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which contrast may be computed. Two typical stimulus configura­
tions where this prerequisite holds are shown schematically in Fig­
ure A.4.1, where the stimuli being described are modulations of a
large uniform background. Panel (a) shows a spot increment/decre­
ment; panel (b) shows a sinusoidal modulation. We use the term
increment!decrement to describe the spot stimulus because it is pos­
sible for a spot to be an increment for one cone type and a decre­
ment for another. As shown in the figure, we let the vector (PLO PMO
PSO)T represent the cone excitation coordinates of the background
and the vector (PL PM PS)T represent the cone coordinates of the
stimulus region we wish to describe.' We define the differential cone
excitation coordinates (APL APMAPs)T as the vector (entry-by-entry)
difference between (PLOPMOPSO)T and (PL PM PS)T.

•

Ia

Transforming to Cone Contrast Coordinates

The transformation between cone excitation coordinates and,
cone contrast coordinates is given by equation A.4.1.

where (CL CMCs)Tis simply a vector of the conventional contrasts seen
by each class of cone. Panels (a) and (b) of Figure AA.2 show how a
stimulus of the sort shown in panel (a) of Figure A.4.1 can be repre­
sented graphically in cone excitation space and in cone contrast space.
These sorts of geometric representations make natural the terminol­
ogy in which colored stimuli are referred to as points in color space.
The transformation from excitation to contrast space may be thought
of as a shift in the origin followed by a rescaling of the axes.

The key feature of cone contrast space is that it incorporates a
simple Von Kries/Weber normalization model of retinal processing
into the stimulus representation. Von Kries (1905) suggested that
signals were normalized independently in the three separate cone
pathways. Weber's Law may be understood as stating that in each
pathway the normalization takes the specific form ofEquation AA.l.
This model has the effect ofequating stimuli across different choices
of background. An example is shown in panel (c) of Figure AA.2.
Because cone contrast coordinates depend on the background, a
crucial component of using cone contrast coordinates is to specify
the background. Without this additional information, it is not pos­
sible to determine the excitation coordinates of the stimulus from
the contrast coordinates.

(A.4.1)

;

I
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(a)

(b)

Figure A.4.1 Two stimulus configurations for which a cone contrast (or opponent
modulation) stimulus description is appropriate. Panel (a) An incre­
ment/decrement is presented on a uniform background. The incre­
ment/decrement and the background do not necessarily have the same
spectral composition, and the same stimulus may be an increment for
one type of cone and a decrement for another. The cone excitation
coordinates of the background are (PLO PMO PSO)T. The cone excitation
coordinates of increment/decrement plus the background are given
by (Pl PM PS)T. We define the differential cone excitation coordinates
(.1Pl.1PM.1Ps)T as the vector difference between (PLO PMOPso)T and (Pl PM
PS)T. Panel (b) A uniform background is modulated sinusoidally. The
cone excitation coordinates ofthe background are (PLO PMOPSO)T, while
the cone excitation coordinates at the peak of the modulation are (Pl

PM Ps)T. The differential cone excitation coordinates (.1Pl.1PM.1PS)T are
again the vector difference between (PLOPMOPso)T and (Pl PM PS)T. When
the stimulus is a spatial or temporal modulation, it is conventional to
use the differential cone excitation coordinates calculated for the
modulation peak.
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Figure A.4.2 Graphical representation of cone excitation and cone contrast coordi­
nates for a spot increment/decrement. For graphical simplicity, only a
two-dimensional plot of the l- and M-.:one coordinates is shown. To
visualize three-dimensional cone coordinates, one must either pro­
vide several two-dimensional views or use some other graphical tech­
nique which shows the full three-dimensional structure. Panel (a) Cone
excitation coordinates. The closed square shows the l- and M-cone
excitation coordinates ofthe uniform background (2.0,4.0). The closed
circle shows the l· and M-cone excitation coordinates of the spot
stimulus (4.0,1.5). Note that the spot is an l-cone increment and M­
cone decrement. Panel (b) Cone contrast coordinates for the same
stimulus. The background always plots at the origin in a cone contrast
diagram, and it is often omitted from plots. The stimulus has positive
l-cone contrast and negative M-cone contrast (1.0,-0.625). Panel (c)
Cone excitation coordinates for a different spot stimulus (4.0,0.375)
against a different background (2.0,1.0). The physical difference be­
tween this stimulus and the stimulus depicted in panel (a) is clear in
the cone excitation space. The two stimuli have identical representa­
tions in cone contrast space.
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Whether to represent stimuli in cone excitation or in cone con­
trast space depends in large measure on the extent to which the in­
vestigator wishes to accept the Von Kries/Weber normalization model
as a starting point for further thinking. The representational deci­
sion may depend in large measure on which space best brings out
the regularities, of a particular data set.

The definition ofcone contrast coordinates is straightforward when.
there is an unambiguous background. For complex stimuli (in par­
ticular for natural images) the definition is less clear. The difficulty
arises in deciding what cone excitation coordinates (Pw PMO Pso)Tto
use for normalization. One possible choice is the spatial average of
the cone excitation coordinates at each stimulus location (Buchsbaum,
1980; Brainard and Wandell, 1986; D'Zmura and Lennie, 1986; Land,
1986). Another is the cone excitation coordinates of the brightest lo­
cation in the stimulus (Land and McCann, 1971). There is no guaran­
tee, however, that either choice correctly models early visual process­
ing. For this reason, investigators studying performance for complex
stimuli have tended to use cone excitation coordinates.

A Metric for Contrast

Consider two stimulus modulations whose cone contrast coordi­
nates differ only by a single scalar, that is modulations A andB such
that (C~C~C~)T= k(C~C~C~)T for some constant k. We say 'that two
such modulations are in the same direction in color space and differ
only in their signal strength. Cone contrast is a natural measure of
signal strength for modulations that isolate a single class ofcone. For
stimuli that modulate multiple cone classes, it is not clear that there
is a generalization of the concept of contrast that would allow us to
summarize signal strength with a single number. There is a great
temptation to define contrast for arbitrary modulations, however. For
example, if we have measured the spatial contrast sensitivity func­
tions (CSFs) for modulations in several different directions in cone
contrast space, it would be convenient to compare the CSFs by plot­
ting them all against a single contrast axis.! But how should this con­
trast axis be defined for modulations in different color directions?
There is currently no agreed upon answer to this question.

One possible choice is to define contrast for any color direction to
have unit value at the detection threshold for modulations in that di­
rection. This principle has the attractive feature that it equates the
visual responses based on direct measurements. But detection thresh­
olds vary between observers, with the background, and with the spatial
and temporal properties of the stimulus, so this method is not practi-
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cal in general. A related possibility is to define contrast to have unit
value at the detection threshold for an ideal observer (Geisler, 1989'
Sekiguchi, Williams and Brainard, 1993). This eliminates observervari~
ability from the definition, but requires instead standardization of pa­
rameters such as the relative number ofL, M-, and Scones present in
the retina. Both methods seem appropriate for particular studies but
too unwieldy for general use. Neither method is likely to coincide with
the natural definition of contrast for cone isolating stimuli.

One convenient convention for specifying the contrast ofa modu­
lation in an arbitrary color direction is to compute the pooled cone
contrast as shown in Equation A.4.2 (Chaparro et al., 1993).

c = ~c~ +c~ +c.; (AA.2)
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This quantity is the square-root of the cone contrast energy and is
closely related to the vect~r-Ien~thmodel ~fcolor thresholds (Poirson,
Wandell, Varner and Brainard; 1990). Using pooled cone contrast as
a measure of signal strength has the attractive feature that it is inde­
pendent of apparatus, observer, and stimulus configuration details.

. It has the slightly peculiar feature that the maximum physicallyachiev-
able con t for an isochromatic modulation (that is a modulation
where t differential cone excitation coordinates have the same
chromaticity as the background) is CMax = .J3 rather than the conven­
tional CMax = 1. This may be remedied by mddi .n E uation A.4.2 to
define the pooled cone contrast as C = (C~ +c~ +C:>/ 3, but this leads
to the similar oddity that the maximum physically achievable con­
trast for cone isolating stimuli is limited at CMax = 1/.J3.

The fact that it is difficult to define a single number measure of
modulation stimulus strength across color directions serves to remind
us that chromatic signal strength is unlikely to be univariate. At the
very least, investigators should be cautious about experimental de­
signs or conclusions that depend critically on how the contrast is
scaled across color directions.

DKLSpace

The DKL color space shares with cone contrast space the feature
thatit is based on a model of early visual processing (See p. 251 and

. Figure 7.1). The model starts with the assumption that early process­
ing extracts differential cone signals. Once extracted, however, the
differential cone signals are not simply rescaled but rather recoded by
three post-receptoral mechanisms: a luminance mechanism and two
opponent chromatic mechanisms. DKL coordinates represent the re-
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sponses of these hypothesized mechanisms. To understand how to
represent stimuli in DKL space, it is necessary to understand how the
responses of these mechanisms are computed. Indeed, in this appen­
dix, I define the DKL space by specifying the response properties of
the underlying mechanisms. This development is atypical. Flitcroft
(1989) provides a clear example of the more conventional develop­
ment, which defines the space in terms of the stimuli that isolate the
mechanisms. I emphasize the mechanism properties because I believe
this approach makes explicit the model underlying the DKL space.
The two developments are formally equivalent (see Knoblauch, 1995).
As we will see below, we can derive the mechanism-isolating modula­
tions once we specify the mechanism properties.

•

Luminance Mechanism

The luminance mechanism is defined so that its response is pro­
portional to the photopic luminance of the differential stimulus. By
inverting Equation A.3.14, we can derive the relation between differen­
tial cone excitation coordinates and differential tristimulus coordinates: 4

2.9448 -35001 13.1745 APL

AY = 1.0000 1.0000 0.0000 APM •

AZ 0.0000 0.0000 62.1891 APs

(A.4.3)

The second row of this matrix equation tells us that the differential
response of the luminance mechanism (denoted by ARLum) is given by

where WLum.L= 1.000,WLum,M = 1.0000, and WLum,s = 0.0000. The nota­
tional choice "R" is a mnemonic for "response" while the notational
choice "W' is a mnemonic for "weight" as in "weighted sum." The
actual values for the weights come from the second row of the matrix
in Equation A.4.3. The constant kLumdefines the units for the mecha­
nism response."

LM opponent Mechanism

The first chromatic mechanism is referred to as the L-M oppo­
nentmechanism. Unlike the luminance mechanism, which is defined



,

570 Appendix, Part IV

directly in terms of its weights, the L-M opponent mechanism is de­
fined by two properties it must satisfy. First, it is a chromatic mecha­
nism, so that its response is zero when the differential signal has the
same chromaticity as the background. That is, the response of the
mechanism is zero when

(A.4.5)

for any constant k. Second, the mechanism response is not affected
by the excitation of the S-cones. The general form for the response

I of the L-M opponent mechanism is

I

•
I

, I
.'

To specify the L-M opponent mechanism, we must find weights WL-M,L'
WL-M,M' and WL-M,S so that the two defining properties are satisfied.
From the second defining condition we have WL-M,S = O. To satisfy the

.first condition, we plug in the values PLO' PMO' and Psofor ~PL,~PMl and
~Ps in Equation A.4.6 and set the result to O. By using the fact that

. i. WL-M.S = 0 we obtain WL-M.LPLO+ WL-M.MPMO= 0 and derive that WL-M.M =

. I .(-WL-M,LPLO)/PMO' Note that the weights for the L-M opponentmecha­
nism vary with the background. In this sense, the DKL space incorpo­
rates a very specific theory of adaptation. The constant defines the
units for the mechanism response.

•
I

I
•,
I

I
•

S-Lum opponent Mechanism

The second chromatic mechanism is referred to as the S-Lum
opponent mechanism. The S-Lum opponent mechanism is also de­
fined by two properties it must satisfy. Like the L-M opponent mecha­
nism, its response is zero when the differential signal has the same
chromaticity as the background. The second property may be stated
as follows. The response of the mechanism is zero when both the
differential S-cone signal ~Ps and the response of the luminance
mechanism ~RLlIm are zero. Together, these conditions give us that
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with WS-Lum,L = -WLum,L' WS-Lum,M = -WLum,M' and Ws-Lum,s = -(WS-Lum,LPLO +
Ws-Lum,mPMO)/PSO' As for the L-M opponent mechanism, the weights for
the Sd.um opponent mechanism vary with the background. The con­
stant ks-Lumdefines the units for the mechanism response.

Conversion to DKL Space

The discussion above defines the weights for the three DKL
mechanisms given any background. The weights let us calculate the
mechanism responses (L\RLlImL\RL-M L\Rs-LlIm) T (up to the free unit con­
stants kLum' kL-M' and ~Lum) from the differential cone coordinates
(L\PLL\PML\Ps) T. Matrix notation is used to express the calculation
succinctly," Each row of the matrix that relates (L\PLL\PML\PS)T to
(L\RLumL\RL-M L\.Rs.Lum) Tshould contain the weights for the correspond­
ing mechanism. Collecting together the expressions for the weights
derived above and bringing the free unit constants to the left-hand
side, we obtain

111

L\R L_M - 1
-PLO 0 L\PM

(A.4.8)-
k L-M PMO

•
L\Rs -1 -1

PLO +PMO L\Ps
kS-Lum PSO

,

I

Equation A.4.8 lets us compute DKL coordinates up to three free
multiplicative constants for each mechanism. Note again that the
construction of the conversion matrix depends on the cone excita­
tion coordinates of the background.

Setting the Unit Constants

To compute DKL coordinates for any specific background, we must
choose values for the constants kLum, kL-M' and ks-Lum' Setting these con­
stants is closely related to the issue of how to define a color contrast
metric. A natural choice for kLum is to set it so that L\RLum expresses
luminance contrast. There is no such natural choice for kr,.M and ks-Lum'
In their original paper Derrington et al. (1984) choose these constants
so that the two chromatic mechanism responses took on the value 1.0
at the maximum modulation obtainable within the gamut of their
monitor. Although this is a natural choice for any particular monitor,

David Brainard
Note
The entry in row 1, col 3 of the matrix should be 0, not 1.

David Brainard
Note
This experession should not have a leading negative sign.
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I

it has the disadvantage that it makes the definition of the color space
apparatus dependent. Other possible strategies include normalizing
to real or ideal observer detection thresholds, as discussed for cone
contrast space above. A final possibility is to normalize each mecha­
nism to have unit response when it is excited in isolation by a stimulus
with unit pooled cone contrast. This has the attractive feature that it is
independent of apparatus, observer, and stimulus configuration de­
tails. It is the choice we adopt for the example below.

A Conversion Example

This section provides a worked example for computing the DKL
coordinates ofa stimulus. Table A.4.1 provides a listing ofa MATl.AB
program that performs the example calculations in their entirety.

Suppose we wish to convert a stimulus with differential cone ex­
citation coordinates (APL APM APs)T= (2.0000 -2.5000 1.0000)Tseen
against a background with cone excitation coordinates (PLO PMO Pso) T

= (2.0000 4.0000 3.0000)T into DKL coordinates. (The numbers for
this example were chosen arbitrarily. There is no guarantee that these
differential coordinates can be achieved within the gamut of a physi­
cally realizable device.) Inserting the values for the background cone
coordinates into Equation A.4.8 we have

dRLum

k Lum

(A.4.9)

(A.4.10)
•

dRs
kS-Lum

dRLum

k Lum
o

o

1-
2

o

-1 -1 2 dPs

1 '2- -
3 3

1-
2

2 2- - --- 3 3

To set the normalization constants, we find the stimuli with unit
pooled cone contrast that isolate each of the DKL mechanisms. The
first step is to invert Equation A.4.9 to derive
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The three columns of the matrix in Equation A.4.10 provide the
differential cone coordinates of stimuli that isolate each of the DKL
mechanisms. This is because in each column of the matrix are the
differential cone coordinates obtained for substituting the three DKL
vectors (1.0000 0.0000 O.OOOO)T, (0.0000 1.000<1 O.OOOO)T, and
(0.0000 0.0000 1.0000)T into the right-hand side of the equation.
Thus the differential cone coordinates ofstimuli that isolate the DKL
mechanisms are (0.3333 0.6667 0.5000)T, (0.6667 -0.6667 O.OOOO)T,
and (0.0000 0.0000 0.5000)T for the luminance, L-M opponent, and
S-Lum opponent mechanisms respectively. (This may be checked eas­
ily by plugging these three vectors into the right-hand side of Equa­
tion A,4.9 and verifying that each of the results has only one non-zero
entry.) Derrington et al. (1984) referred to these stimuli as luminance,
constant-B and constant R & G modulations. In Chapter 7 (Figure
7.20) they are referred to as the achromatic, constant-S, and constant
L & M modulations. I prefer to call them isochromatic, red-green
isoluminant, and S-cone isoluminant modulations. (The terminol­
ogy and conventions for using the DKL color space are still evolving.)

The differential cone coordinates obtained from Equation A.4.1 0
do not have unit pooled cone contrast. In this example, we adopt the
convention that the normalizing constants, kLum' kL-M' ks-Luml be chosen
so that mechanism-isolating stimuli with unit pooled cone contrast
produce unit responses in the three DKL mechanisms. Normalizing
each modulation obtained above, we get. (1.1547 2.3094 1.7321)T,
(1.7889 -1.7889 O.OOOO)T, and (0.0000 0.0000 3.0000)T as the differ­
ential cone excitation coordinates of the stimuli that should generate
unit response in each of the DKL mechanisms. (To compute pooled
cone contrast, we divide differential cone excitation coordinates above
by the cone excitation coordinates of the background and then apply
Equation A.4.2.) We want to choose the scalars kLum' kL-M' and ks-Lum so
that when these three vectors are multiplied by the matrix in Equa­
tion A.4.9, the three. corresponding mechanism responses dRLum' d~.rM;

and dRs are unity. The appropriate scalars are kLum = 0.2887, kL-M =
0.3727, and ks-Lum = 0.1667. Substituting the constants into Equation
A.4.9 and simplifying gives us

dRLum 0.2887 0.2887 0.0000 dPL

dR L•M = 0.3727 -0.1863 0.0000 dPM • (A.4.11)

dRs -0.1667 -0.1667 0.3333 dPs
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I· Performing this matrix multiplication for the vector (.6.PL .6.PM.6.PS)T

= (2.0000 -2.5000 1.0000)Twe obtain its DKL coordinates as (.6.RLum
.6.RL-M.6.Rs)T= (-0.1443 1.2112 0.4167)T. ToconvertfromDKLcoor­
dinates back to differential cone coordinates, we would use the in­
verse of Equation A.4.11:

.6.PL 1.1547 1.7889 0.0000 dRLum

dPM = 2.3094 -1.7889 0.0000 dRL _M. (A.4.12)

dPs 1.7321 0.0000 3.0000 dRs

Graphical Representation and Spherical Coordinates

The DKL coordinates obtained above may be used to plot the
stimulus modulation in the color space diagram shown in panel (A)
ofFigure 7.20. The first coordinate, -0.1443, would locate the stimu­
lus below the isoluminant plane towards the -900 pole of the axis

i
.; labeled achromatic; the second coordinate, 1.2112, would locate the
.; stimulus towards the 00 pole of the axis labeled constant S-cone; the
\ third coordinate, 0.4167, would locate the stimulus towards the 2700

.; pole of the axis labeled constant L & M-cone. (The convention in
· \ Figure 7.20 is that the 2700 pole represents the direction ofincreas-
· ; . ing S-cone response.)

•

· ~ Modulations represented in this color space diagram are some-
; times expressed in spherical coordinates. The angular azimuth and

.; elevation are readily computed from the rectangular coordinates. With

.; the sign conventions of Figure 7.20, we obtain = arctan -0.4167/

.l 1.2112) =-18.980 and 9=arctan (-0.1443/ (-Q.4167)2+(1.2112n =-6.43.
I It is important to note that these angular specifications depend on
•l the normalization method used to define unit responses for the three

.; DKL mechanisms. For this reason, angular specifications must be in­
·l terpreted with great care.
:' l
·1 Discussion

1

The DKL space is not simple to understand or to use. As with.
cone contrast space, its usefulness depends chiefly on whether it

1

· 1 brings out regularities in experimental data. Indeed, most ofthedis-
cussion of cone contrast space above applies to the DKL space as

· 1 well. At a broad level, the model underlying the space dearly cap­
I tures the opponent nature of color coding (Hurvich and Jameson,

1957). Understanding the exact nature of the opponent mechanisms
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(and whether there are only three) is a subject of much current in­
terest (see for example Krauskopf, Williams and Heeley, 1982;
Krauskopf, Williams, Mandler and Brown, 1986; Guth, 1991;
Krauskopf and Gegenfurtner, 1992; Cole, Hine and McIlhagga, 1993;
DeValois and DeValois, 1993; Poirson and Wandell, 1993; Chichilnisky,
1994; Webster and Mollon, 1995). The derivation of DKL space pre­
sented here may be generalized to define color spaces based on the
responses of any three linear color mechanisms.

As with cone contrast space, proper interpretation ofDKL coor­
dinates requires an explicit specification of the cone excitation coor­
dinates of the background. In addition, since there is no agreed upon
standard for the normalization constants kLuffi ' kL-M' and ks-Luffi ' these
must be explicitly specified whenever the space is used.

The specification of the DKL mechanism weights used here (Equa­
tion A.4.3) depends on the relative scalings chosen for the L, M, and
S-Cone sensitivities. In particular, the scalings used in Equation A.3.14
are chosen so that photopic luminance of a stimulus is given by the
sum of its L- and M-eone coordinates. Sometimes cone sensitivities
are scaled so that the maximum sensitivity of each cone is equal to
unity. Such scaling changes must be taken into account when deriv­
ing DKL coordinates. The space as conventionally defined also incor­
porates the simplifying assumption that S-cones do not contribute to
photopic luminance. The Smith-Pokorny (Table A.3.4) estimates of
the cone sensitivities are designed so that this assumption holds.

The Relation Between Mechanisms and Modulations

As mentioned above, the development here is atypical in that it
defines the DKL space in terms of visual mechanism properties rather
than in terms of the modulations that isolate the mechanisms. Advanced
students may garner insight about the relation between the two ap­
proaches from Figure A.4.3, which shows graphically the relation be­
tween color mechanisms and the modulations which isolate them..

Notes

I The superscript "T" after a vector denotes vector transpose. It indicates that the
vector should be treated as a column vector in any matrix operation. We use this
notation for the inline expressions to conserve vertical space; we show column
vectors explicitly in the matrix equations and figures where space permits.

2 See Chapter 9 for more on spatial contrast sensitivity functions.
3 To avoid the inconvenience of double subscripts in this appendix, we denote

luminance with "Lum" rather than the CIE approved ..L.."
4 See Endnote 6 in Appendix Part III for the operational rules of matrix algebra.
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Figure o4A.3 Graphical representation of mechanisms and the modulations which iso­
late them. For graphical simplicity, only two-dimensional plots of the l­
and M-cone coordinates are shown. For purposes of this figure, only
color directions are of interest, therefore all vectors are shown normal-
ized to unit length. .

Panel (a) The color direction of an isochromatic modulation is shown
by the solid line. Points on this line specify the differential l- and M­
cone excitations that isolate the luminance mechanism. The direction of
the line was obtained from the first column of the matrix in Equation
A.4.12 and has the same relative cone coordinates as the background.
The color direction of the l-M opponent mechanism is shown by the
dashed line. Points on this line give the relative contribution of the differ­
entiall- and M-cone excitations to the mechanism response. The direc­
tion of this line was obtained from the second row of the matrix in Equa­
tion AA.ll. Note that the isochromatic stimulus is orthogonal to the l-M
opponent mechanism. Readers familiar with analytic geometry will rec­
ognize that this orthogonality indicates that the mechanism response to
the modulation is zero. If a full three dimensional plot were shown, the
modulation would also be orthogonal to the direction of the S-lum op­
ponent mechanism. The color direction of the luminance mechanism is
shown as the dotted line. The direction of this line was obtained from the
first row of the matrix in Equation AA.ll. Note that the isochromatic
stimulus does not line up with the luminance mechanism. The defining
feature of the isochromatic modulation is its orthogonality to the chro­
matic mechanisms, not its relation to the luminance mechanism. The
orthogonality is preserved under transformations of color space, whereas
the angle between the modulation and the luminance mechanism is not.

Panel (b) The color direction of an isoluminant modulation that iso­
lates the l-M opponent mechanism is shown by the dot-dash line. The
direction of this line was obtained from the second column of the matrix
in Equation AA.12. As in panel (a) the color direction of the luminance
mechanism is shown by the dotted line. Note that the isochromatic stimu­
lus is orthogonal to the luminance mechanism. The color direction of
the l-M opponent mechanism is again shown as the dashed line. Note
that the isoluminant stimulus does not line up with the opponent mecha­
nism it isolates.
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Table A.4.1 The table provides a listing of a MATLAB program that computes the
conversion example described in the appendix. MATLAB is a widely
available numerical programming language. The interested reader may
find this listing helpful in understanding the details of the color space
conversion. Comments have been added to the listing in an attempt to
make the program readable even for those unfamiliar with MATLAB
syntax. MATLAB is a registered trademark of The MathWorks, Inc.

% DKL Example
%
% MATLAB program to compute the example
% used for the space in Appendix Part IV.
%
% MATLAB is a registered trademark of the
% MathWorks, Inc.
%
% 7/6/95 dhb Wrote it.

% STEP 1: Set the background vector for
% the conversion
bg=[243]';

% STEP 2: Set the vector we wish to convert
diffcone_coords = [2 -2.5 1] ';

% STEP 3: Set M_raw as in equation A.4.9.
% This is found by inserting the background
% values into equation A.4.8. Different
% backgrounds produce different matrices.
% The MATLAB notation below just
% fills the desired 3-by-3 matrix.
M_raw = [ 110 ; .,.

1 -bg(1)/bg(2) 0 ; ...
-1 -1 (bg(1)+bg(2» Ibg(3) i.

% STEP 4: Compute the inverse of M for
% equation A.4.10. The MATLAB inv() function
% computes the matrix inverse of its argument.
M_raw_inv = inv(M_raw);

% STEP 5: Find the three isolating stimuli as
% the columns of M_inv_raw. The MATLAB
% notation X(:,i) extracts the i-th column
% of the matrix X.
isochrom_raw = M_raw_inv ( : , 1) ;
rgiso1um_raw = M_raw_inv(:,2);
siso1um_raw = M_raw_inv(:,3);

% STEP 6: Find the pooled cone contrast of each
% of these. The MATLAB norm() function returns
% the vector length of its argument. The MATLAB
% .1 operation represents entry-by-entry division.
isochrom_raw-poo1ed = norm(isochrom_raw .1 bg);
rgiso1um_raw-poo1ed = norm(rgiso1um_raw .1 bg);
siso1um_raw-poo1ed = norm(siso1um_raw .1 bg);

% STEP 7: Scale each mechanism isolating
% modulation by its pooled contrast to obtain
% mechanism isolating modulations that have

(continued on next page)
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, unit length.
isochrom_unit = isochrom_raw / isochrom_raw-pooled;
rgisolum_unit = rgisolum_raw / rgisolum_raw-pooled;
sisolum_unit = sisolum_raw / sisolum_raw-pooled;

% STEP 8: Compute the values of the normalizing
% constants by plugging t~e unit isolating stimuli
% into A.4.9 and seeing what we get. Each vector
% should have only one non-zero entry. The size
% of the entry is the response of the unscaled
, mechanism to the stimulus that should give unit
, response.
lum_resp_raw = M_raw*isochrom_unit;
l_minus_m_resp_raw = M_raw*rgisolllm-unit;
s_minus_lum_resp_raw = M_raw*sisolllm-unit;

% STEP 9: We need to rescale the rows of M_raw
% so that we get unit response. This means
% mUltiplying each row of M_raw by a constant.,
% The easiest way to accomplish the multiplication
% is to form a diagonal matrix with the desired
% scalars on the diagonal. These scalars are just
% the multiplicative inverses of the non-zero
% entries of the vectors obtained in the previous
% step. The resulting matrix M provides the
% entries of A.4.11. The three _resp vectors
% computed should be the three unit vectors
% (and they are).
D_rescale = [1/lum_resp_raw(1) 00; ...

o 1/1_minus_m_resp_raw(2) 0 ; ...
o 0 1/s_minus_lum_resp_raw(3) I ;

M = D_resca1e*M_raw;
1um_resp = M*isochrom_unit;
l_minus_m_resp = M*rgisolum_unit;
s_minus_lum_resp = M*sis01um_unit;

% STEP 10: Compute the inverse of M to obtain
, the matrix in equation A.4.12.
M_inv = inv (M) ;

% STEP 11: Multiply the vector we wish to
% convert byM to obtain its DKL coordinates.
DKL_coords = M*diffcone_coords;

, STEP 12: convert to spherical coordinates.
% According to the conventions in the original DKL
, paper, azimuth of 0 is along our rgisolum axis,
% azimuth of 90 is along our negative sisolum
% axis. The isochromatic axis has an elevation
, of 90 degrees. To do the conversion. we flip the
% sign of the sisolum coordinate and then do a
% standard conversion to polar coordinates .

•
RADS_TO_DEGS = 360/(2*pi);
azimuth_rads = atan(-DKL_coords(3)/DKL_coords(2»;
isolum_len = sqrt(DKL_coords(2)A2 + DKL_coords(3)A2);
elevation_rads = atan(DKL_coords(1)/isolum_len);
azimuth = RADS_TO_DEGS*azimuth_rads;
elevation = RADS_TO_DEGS*e1evation_rads;



Cone Contrast and Opponent Modulation Color Spaces 579

Acknowledgment

My understanding of the material presented here has developed
through numerous discussions over the past several years. Particularly
helpful have been conversations with R. Brown, C. Chen, M. D'Zmura,
J. Foley, G. Jacobs, J. Krauskopf, P. Lennie, J. Palmer, A. Poirson, N.
Sekiguchi, and B. Wandell. G. Boynton, P. K. Kaiser, A. Poirson, andJ.
Speigle provided critical comments on the chapter.


