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Some categorization tasks are easier to perform than oth-
ers. For example, it is easier to classify Siamese versus
Sphinx cats than Siamese versus Himalayans. Many factors
affect the difficulty of such tasks—for example, stimulus
dimensionality, number of relevant dimensions, correlations
between dimensions, and category overlap. Each of these
factors is determined by category structure. In this study,
we systematically manipulated category structure and
characterized its effect on human performance using ac-
curacy and efficiency measures. In particular, we try to
show that a specific aspect of category structure, covariance
complexity, is an excellent predictor of task difficulty. Co-
variance complexity is an information-based characteri-
zation of the covariance matrix that shapes our categories.
This measure is formally defined below.

The relationship between category structure and task
difficulty has been of interest to psychologists for several
decades. It was examined by Shepard, Hovland, and Jen-
kins (1961) in their classic study, Learning and memoriza-
tion of classifications. They found that the order of difficulty,
measured in number of errors, could be predicted by the
number of dimensions required to specify the categories.
Furthermore, they suggested that when the number of rel-

evant dimensions, say d, is equal in two different tasks, one
task might be easier than another if a portion of the stim-
uli in that task can be correctly classified using fewer than
d dimensions. Bourne (1970) also ordered the difficulty of
categorization tasks in his famous study on rule learning.
He found that conjunctive rules are easier than disjunctive,
followed by conditional, then biconditional rules. The
present study extends this previous work by proposing a
formal measure for predicting categorization difficulty
and by using artificial categories that embody qualities of
natural categories—for example, the categories overlap
and the stimuli differ along continuous-valued dimensions.

A second goal of our study was to extend previous cat-
egorization research from use of bivariate continuous di-
mensions (e.g., Ashby & Gott, 1988; Ashby & Maddox,
1990; McKinley & Nosofsky, 1995) to use of trivariate
continuous dimensions. This extension is important be-
cause individual exemplars of natural categories often dif-
fer along many continuous-valued dimensions (e.g., Ashby,
1992). For example, trees vary continuously in height,
girth, hue, and texture. Yet, few categorization studies have
used stimuli that vary parametrically along more than two
continuous dimensions (e.g., Homa, Sterling, & Trepel,
1981; Posner & Keele, 1968, 1970).

First, we introduce the trivariate categorization task and
the experimental design. We specify category structure
and discuss factors that affect task difficulty. This discus-
sion includes predictions for performance across five con-
ditions based on our manipulation of category structure.
Then, we present an experiment involving more than
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To understand why some categorization tasks are more difficult than others, we consider five factors
that may affect human performance—namely, covariance complexity, optimal accuracy level with and
without internal noise, orientation of the optimal categorization rule, and class separability. We argue
that covariance complexity, an information-theoretic measure of complexity, is an excellent predictor
of task difficulty. We present an experiment that consists of five conditions using a simulated medical
decision-making task. In the task human observers view hundreds of hypothetical patient profiles and
classify each profile into Disease Category A or B. Each profile is a continuous-valued, three-dimensional
stimulus consisting of three vertical bars, where each bar height represents the result of a medical test.
Across the five conditions, covariance complexity was systematically manipulated. Results indicate
that variation in performance is largely a function of covariance complexity and partly a function of in-
ternal noise. The remaining three factors do not explain performance results. We present a challenge
to categorization theorists to design models that account for human performance as predicted by covari-
ance complexity. 
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1,500 trials of data from each of 30 participants who par-
ticipated in one of the five conditions. Finally, we summa-
rize our results and discuss possible future directions for
this line of research.

Our Trivariate Categorization Task 
The experimental paradigm employed is the general

recognition randomization technique. This technique was
developed to investigate decision processes, and it has
been successfully applied to one- and two-dimensional
categorization data (e.g., Ashby & Maddox, 1992; Mad-
dox & Ashby, 1993; McKinley & Nosofsky, 1995). Given
that the paradigm has been fully described in several pre-
vious publications (e.g., Ashby, 1992; Ashby & Gott, 1988;
Ashby & Maddox, 1992), we do not reintroduce it here;
rather, we present necessary details pertaining to our par-
ticular categorization task. 

An example of the stimulus used on each trial is shown
in Figure 1. Each stimulus was a hypothetical patient’s pro-
file consisting of three bars where each bar height repre-
sented the outcome of a medical test. The bars were labeled
“BP” for blood pressure level, “WBCs” for white blood
cells, and “serK” for serum potassium level. For each par-
ticipant, the height of the three bars differed across trials,
while the labels remained the same. Participants were told
that the purpose of the experiment was to study the process
physicians use when diagnosing diseases. Also, partici-
pants were instructed to act as a physician and decide
whether each of many patients had Disease A or Disease B.
Feedback about accuracy was provided after each re-
sponse, but participants had no training before giving their
first response.

In each condition, participants classified hundreds of
these three-dimensional stimuli, one at a time, into one of
the two categories, A or B. Each category was specified by
a trivariate normal distribution, and the heights of the three
bars that defined each stimulus were specified by a point
randomly sampled from one of these distributions. The
point coordinates of each stimulus were converted to a three-
bar pattern, where each coordinate value determined the
height of one bar. For example, the B prototype stimulus
for Participant 1 in Condition 1 was a three-bar stimulus
generated from the coordinate vector [207 207 148]¢,
where the prime denotes “transpose” (Figure 1). 

Trivariate normal distributions were specified by nine
parameters: a mean and variance on each of the three stim-
ulus dimensions and a covariance between each pair of di-
mensions. For notational convenience, we refer to the
three dimensions as b, w, and k. The distribution parame-
ters are typically collected as a mean vector m and covari-
ance matrix S, defined as 

where, for example, mb and s2
b are the trial-by-trial mean

and variance, respectively, of the height of the bar labeled

“BP,” and covbw is the trial-by-trial covariance between the
heights of the bars labeled “BP” and “WBCs.” Note that the
prototype of each category is completely specified by its
mean vector.

In all of our conditions, the means of the A and B cate-
gory distributions differed, m A Þ m B, and the covariance
matrices were identical, SA = SB

. The optimal strategy for
classifying stimuli drawn from normal distributions with
equal variance–covariance matrices is to use a linear de-
cision bound (e.g., Ashby, 1992; Duda & Hart, 1973). We
restricted the optimal decision bounds to the linear class
so that (1) the form of the optimal boundary would be con-
stant across conditions, and (2) we could compare results
of the present study with those of previous work involving
linear decision bounds. The categorization problem for
Condition 1 is illustrated in Figure 2. The figure shows
two spheres separated by a plane. Each sphere represents
an equal likelihood contour for a trivariate normal distri-
bution. Another equivalent interpretation is that each
point on a sphere is the same number of standard deviation
units from the category mean (i.e., prototype). In general,
the equal likelihood contours for trivariate normal distri-
butions are ellipsoids. They are spheres in the special case
where the variances on all three dimensions are equal and
the pairwise covariances are all zero. To maximize percent
correct, the participant should employ the deterministic
strategy of classifying all stimuli that fall on the left side
of the plane as A and all on the right as B. Thus the plane
forms a decision bound that partitions the stimulus space
into two category regions. 

Category Structure 
Throughout this study categories were defined by trivari-

ate normal distributions. Thus, category structure was
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Figure 1. Example of a stimulus that was presented to partici-

pants in each condition. Each stimulus was a hypothetical pa-
tient’s profile, consisting of three bars where each bar height rep-
resented the outcome of a medical test. The bars were labeled
“BP” for blood pressure level, “WBCs” for white blood cells, and
“serK” for serum potassium level. The participant’s task was to
indicate whether the hypothetical patient had Disease A or Dis-
ease B. The coordinates for this stimulus are 207, 207, and 148,
corresponding to the height of the bars from left to right.
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Figure 2. Equal likelihood contours of trivariate normal distributions from
Condition 1 separated by a discriminating plane. Although the distributions
extend infinitely outward, most of the samples are located within the 
central areas of each distribution.

completely determined by 12 parameters associated with
these distributions: two category distribution means (3 pa-
rameters each) and one common covariance matrix (6 pa-
rameters). Table 1 provides the parameter values that de-
fine the A and B categories for each condition. Because
correlations are easier to interpret than covariances, cor-
responding correlation values, ri, are also reported. In
Conditions 1 and 5, the variances were equal across di-
mensions and all correlations were zero. In Condition 2,
the variances were again equal, and all the correlations
were nonzero but equal in magnitude. In Condition 3, no
two variances were equal, and two correlations were ap-
proximately equal in magnitude. In Condition 4, no two
variances or correlations were equal. The stimuli gener-
ated by random draw from the distributions specified in
Table 1 are presented in Figure 3. Plus symbols represent
stimulus vectors randomly picked from the Category A
distribution, and circles represent vectors randomly picked
from the Category B distribution. Each solid line is the
edge of a plane representing the optimal decision bound-
ary. Next we briefly consider several factors that may af-
fect task difficulty and derive their predictions—namely,
the order of conditions from least to most difficult. 

Factors That May Affect Categorization 
Difficulty

Some factors affect categorization difficulty in obvious
ways. For example, consider stimulus dimensionality. Learn-
ing to classify lines that vary in length (a one-dimensional

problem) is easier than learning to classify lines that vary
in length and orientation (a two-dimensional problem), as-
suming that length and orientation are uncorrelated. Thus,
high-dimensional categorization problems tend to be more
difficult than low-dimensional problems. In this study we
were interested in factors that have less obvious conse-
quences; therefore, factors like a change in dimensional-
ity were invariant across our conditions. Other factors are
discussed below. 

Covariance complexity. Complexity may be defined in
several ways. We adopt van Emden’s (1971, p. 7) defini-
tion of complexity, “the way in which a whole is different
from the composition of its parts.” Applied to a covariance
matrix, complexity is a measure of the interactions of the
random variables associated with the covariance matrix.
Van Emden considered the multivariate normally distrib-
uted random vector for which S is the covariance matrix
and derived an initial mathematical definition of covari-
ance complexity. He noted that this definition was prob-
lematic, however, because it depends on the coordinates
of the original random variables. Following van Emden,
Bozdogan (1990) derived a definition of covariance com-
plexity that is not coordinate dependent:

where rank(S) is the number of linearly independent rows
or columns of the S matrix, the trace of a matrix is the sum
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of the elements on the main diagonal, and det (S) is the de-
terminant of S. In all our applications, rank (S) = 3. C(S)
is an upper bound to van Emden’s term. As such, it “mea-
sures both inequality among the variances and the contri-
bution of the covariances in S” (Bozdogan, 1990, p. 241).
Specifically, C(S) increases with inequality among the
variances in S and with the existence of nonzero covari-
ances.

We hypothesize that as covariance complexity increases,
task difficulty increases. Covariance complexity values
for Conditions 1 through 5 are 0, 0.7, 1.8, 1.8, and 0. Note
that the complexities for Conditions 3 and 4 are equal be-
cause the covariance matrix for Condition 4 was gener-
ated by merely changing the coordinate system for the co-
variance matrix in Condition 3. Complexity indicates that
Conditions 1 and 5 should be easiest (i.e., performance
levels will be highest), Condition 2 should be more diffi-
cult, and Conditions 3 and 4 should be the most difficult.
These predictions make sense intuitively because an ob-
server can achieve optimal accuracy in Conditions 1 and
5 by simply learning the prototypes for each category (i.e.,
the category means). In Condition 2, the observer must
learn not only the prototypes but also the relationships be-
tween pairs of bars. Finally, in Conditions 3 and 4, ob-
servers must learn the extent to which each stimulus bar
varies in height, as well as the relationships between pairs
of bars. Predicted performance order based on covariance

complexity is summarized in Table 2 along with predic-
tions based on additional factors, to be discussed next. 

Orientation of the optimal bound. A second factor
that might influence difficulty of the task is the particular
orientation of the optimal bound. For example, a task in
which the optimal bound is perpendicular to one of the
stimulus dimensions is often particularly easy for ob-
servers. In this situation, a person could maximize accu-
racy by following a rule in which two of the stimulus di-
mensions are ignored and a criterion c is placed on the
third dimension (e.g., Ashby, Alfonso-Reese, Turken, &
Waldron, 1998). For our stimuli, such a rule would trans-
late to something like: 

Respond “A” if the height of the third bar exceeds c; 
otherwise respond “B.”

Because such dimensional rules are easy to learn and
implement, we designed Conditions 1–5 so that the opti-
mal bound was never perpendicular to a stimulus dimen-
sion. Furthermore, it was important to design the condi-
tions so that the maximum performance achievable using
information from just two dimensions would be signifi-
cantly less than that achievable using an optimal bound.
Our particular parameter values met this requirement as
follows: Across Conditions 1–5, an ideal observer who ig-
nores one of the stimulus dimensions entirely could ob-
tain at most 86.0%, 74.0%, 68.2%, 76.2%, and 72.4% cor-

Table 1 
Distribution Specifications for the Stimuli Used in Conditions 1–5

Trivariate Normal Distribution Characteristics

Category A Category B Covariance Matrix
Condition Mean Mean for Categories A and B
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Figure 3. Stimuli and optimal decision bounds for Conditions 1–5. Plus symbols represent the Category A stimuli
and circles represent the Category B stimuli. Each solid line is the edge of a plane representing the optimal decision
boundary. The following viewpoints, specified by azimuth and elevation (az, el), were used to display the planar
boundaries along their edges: Condition 1, (214,15); Condition 2, (326,15); Condition 3, (301,15); Condition 4,
(214,15); and Condition 5 (214,15).
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rect, respectively.1 But, using information from all three
stimulus dimensions, the same observer could respond
correctly to at least 90% of the stimuli in each of Condi-
tions 1–4 and 76% correct in Condition 5. 

It is difficult to predict a priori whether the orientation
of the optimal bound affects task difficulty. Therefore,
Condition 4 was designed to investigate this issue. The stim-
uli for each category in Condition 4 were obtained by ro-
tating and translating the stimuli from Condition 3 in such
a way that the optimal decision bound was approximately
the same as in Condition 1. (Compare the bounds of Con-
ditions 1 and 4 in Figure 3). If task difficulty depends only
on the particular orientation of the optimal decision bound,
then performance levels of participants in Condition 4
should be close to that of participants in Condition 1. A
notable consequence of rotating the bound from Condi-
tion 3 to Condition 4 is that participants in the latter con-
dition could achieve up to 76% correct by ignoring a stim-
ulus dimension. This is 8% more than the corresponding
maximum in Condition 3. Thus, participants in Condi-
tion 4 may have been more motivated to ignore a stimulus
dimension than participants in Condition 3.

Optimal accuracy. A third factor that might affect task
difficulty is optimal accuracy. It is natural to expect learn-
ing to occur more quickly in tasks where optimal accuracy
is 100% than in tasks where optimal accuracy is low. In
Conditions 1–5, optimal accuracy was 90%, 91%, 92%,
92%, and 76%, so if this factor predicts task difficulty,
Conditions 1–4 should be about equal in difficulty, and
Condition 5 should be considerably more difficult.

Of course, humans are not ideal observers. Even if an
observer were able to learn the optimal bound exactly, his/
her accuracy would be less than optimal because of inter-
nal (perceptual and criterial) noise. Thus, a more relevant
predictor of task difficulty than accuracy of the optimal
classifier may be optimal accuracy in the presence of in-
ternal noise. To test this hypothesis, we computed perfor-
mance of the optimal classifier given various levels of in-
ternal noise. The resulting values are shown in Figure 4.
The vertical broken line shows the mean internal noise

value, approximately 0.27º of visual angle, that we esti-
mated from the data in Conditions 1–4. (Noise estimates
were obtained by performing model fits of the General
Linear Classifier, where one free parameter represents in-
ternal noise. Our model fitting procedures are described in
the Appendix.) Condition 5 was designed to have the same
covariance complexity as Condition 1 and the same sensi-
tivity to noise as Conditions 3 and 4. Thus, probability
curves for Conditions 3–5 are similar for noise values ap-
proximately equal to or greater than 0.27º. In all five con-
ditions, optimal accuracy decreases as noise levels in-
crease. Except for extremely small noise levels, Figure 4
indicates that Condition 1 should be easiest, followed by
Condition 2, and that Conditions 3–5 should be about
equal in difficulty. 

Class separation. One final measure that might pre-
dict task difficulty across Conditions 1–5 is the amount of
separation between the exemplars of two categories, a fac-
tor referred to as “class separation” in the cluster analysis
literature. Optimal accuracy often increases with class sep-
aration, even though there is no necessary relation between
the two measures. Although many different measures of
class separation have been proposed, the general idea is
that class separation increases with between-categories
scatter and decreases with within-category scatter (e.g.,
Fukunaga, 1990, pp. 446–447). Many of the clustering al-
gorithms used in statistics try to partition the stimulus set
so that some measure of class separation is maximized.
We computed class separation by using the popular mea-
sure (e.g., Fukunaga, 1990)

J = trace (S21S ),
where S is the common category variance–covariance ma-
trix, and S is the between-category scatter matrix, defined as 

The vector m is the mean of m A and m B. For categories
containing stimuli that vary along a single dimension, J is
very similar to d 2/s2, where d is the distance between cat-

S = -( ) -( )¢ + -( ) -( )¢1
2

1
2

m m m m m m m mA A B B .

Table 2 
Predicted Performance Orders of Conditions 1–5 (C1–C5)

Predicted Performance Order

Factor Low High

Covariance complexity (C3 = C4) < C2 < (C1 = C5)
1.8 < 0.7 < 0

Orientation of optimal bound* C1 = C4
Optimal accuracy C5 < (C1 < C2 < C3 < C4)

76% < (90% < 91% < 92% < 92%)
Optimal accuracy with noise (C3 < C4 < C5) < C2 < C1

(68% < 67% < 67%) < 80% < 84%
Class separation C5 < C1 < C2 < (C3 = C4)

0.6 < 1.6 < 1.8 < 2.0

Observed performance order (C3 < C4) < C2 < C5 < C1
based on efficiency (.12 < .15) < .46 < .57 < .81

*C2, C3, C5 not predicted.
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egory means and s2 is the common category variance.
Note that this statistic increases when the means are
moved further apart, the variability within each category
decreases, or both. In either case, the categories should be-
come more psychologically distinct. The measure J is es-
sentially a multivariate generalization of this same idea. 

Across Conditions 1–5, the measure J was 1.64, 1.81,
2.03, 2.03, and 0.56, so class separation (as defined by J )
predicts the following experimental order from least to
most difficult: Condition 3 (= 4), Condition 2, Condi-
tion 1, and Condition 5. 

Other factors. Of course, other factors could affect
task difficulty besides the five explicitly considered in this
section. For example, it is well known that difficulty in-
creases with the complexity of the optimal bound. So, tasks
in which the optimal bound is quadratic are usually more
difficult than tasks in which the optimal bound is linear
(e.g., Ashby & Maddox, 1992; Maddox & Ashby, 1993).
Another factor that might affect difficulty is category base
rate. A task with unequal category base rates could be eas-
ier than one with equal base rates. For example, if the prob-
ability of observing a stimulus from Category A is .9, then
an observer can correctly classify 90% of the stimuli by
simply responding “A” all the time. In the present conditions,
however, neither form of the optimal bound nor category
base rate could cause one condition to be any more difficult
than another, since the optimal bound was linear and cate-
gory base rates were equal in all conditions. 

EXPERIMENT 

Method
Participants. Thirty adults participated in this study, six in each

condition. They were paid $5 for each 45-min session. Twenty-eight
participants were graduate students in either psychology or mathe-
matics at the University of California, Santa Barbara (UCSB); the
other 2 were residents of the UCSB community. The age of these
participants ranged from early 20s to late 30s. All but 1 participan t
verbally reported that his/her vision was 20/20 or corrected to 20/20.
The remaining participant took a visual discrimination test to deter-
mine that her vision was adequate for participating in the experiment. 

Stimuli and Materials. As noted, the stimulus on each trial con-
sisted of three vertical bars. The bars were labeled “BP” for blood pres-
sure level, “WBCs” for white blood cells, and “serK” for serum potas-
sium level. Across participants, the left–right order of the three bars
was varied; the bars and labels were shuffled together. Thus, the labeled
prototype bar patterns were different for every participant (Table 3).
For each condition, 500 stimuli were generated by random draw from
two trivariate normal distributions as specified in Table 1. Two hundred
fifty stimuli came from the Category A distributi on and the other 250
came from the Category B distribution (Figure 3). Programs for manip-
ulating the stimulus sets and performing model fits were implemented
in MATLAB (1994) using the GRT Toolbox (Alfonso-Reese, 1995).

The stimuli were presented on a NEC/MultiSync3D VGA moni-
tor in a normally lit room. Contrast of each stimulus was high, with
the bars and text displayed in white and the background in black. The
bar heights ranged from 0º to 5.11º of visual angle. Each bar subtended
a width of 1.02º and the horizontal spacing between bars was also 1.02º. 

Procedure. Participants were told that the experiment studied the
processes physicians use when diagnosing diseases. The task was de-
scribed as one of medical diagnosis in which the participant acts as
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Figure 4. Maximum performance as a function of internal noise. The figure shows how the
performance of an ideal observer falls off in the presence of internal noise for the stimuli used
in our conditions. For an ideal observer using a linear decision bound, it is not possible to dis-
tinguish between perceptual and criterial noise, and we use the term internal noise to refer to
their joint effects. To calculate the curves shown in the figure, we used the actual bar heights dis-
played to participants.
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a physician and must decide whether each of many patients has Dis-
ease A or Disease B. On each trial, a set of three vertical bars repre-
senting a patient’s three symptoms was presented on a computer
screen. The participant’s task was to study the heights of the three
bars, categorize the stimulus into one of two diseases, A or B, and
press the corresponding button to indicate their response. Each stim-
ulus was displayed until the participant ’s response terminated the
trial. The word “Correct” or “Incorrect” was displayed on the screen
at the end of each trial; thus, the participant received feedback. Par-
ticipants had no training before giving their first response. On each
trial, the three stimulus components, the correct category, and the
participant ’s response were recorded. 

Participants were instructed not to worry about time and to focus
on accuracy. They were also warned that sometimes a patient can have
symptoms typical of a disease without actually having that disease and
that such situations would occur in approximately 10% of the trials
throughout the experiment. 

In Condition 1 each participant ran in three experimental sessions,
and in the other conditions all participants ran in four sessions with
one exception. In Condition 4, Participant 1 ran in five sessions. Be-
cause we are interested in asymptotic performance, we report data
from each participant ’s final session. 

All experimental sessions were run on consecutive days. Each daily
45-min session began with 10 trials of practice (not included in the
data analysis), followed by 10 experimental blocks of 50 trials each.
Thus, each participant in Condition 1 completed 1,530 trials, and
each participant in Conditions 2–4 completed at least 2,040 trials.
Participants were allowed to rest between blocks. 

At the end of the last experimental session in Conditions 2, 3, and
4, each participant was asked to describe on paper the strategy he/she
used to generate category responses. 

Results 
Condition 1. In this condition, and in the remaining four

conditions, the learning curves were flat by the end of
training. Table 4 lists overall accuracy for each participant
during his/her last experimental session. Note that 5 of the
6 participants correctly classified at least 82% of the stim-
uli. For 3 of the participants, the null hypothesis that the
participant’s performance equaled that of an ideal observer
(i.e., 90% correct) could not be rejected (Participant 1, Z =
21.06, p > .1; Participant 2, Z = 21.36, p > .05; Participant
3, Z = 23.90, p < .001; Participant 4, Z = 25.83, p < .001;
Participant 5, Z = 214.34, p < .001; and Participant 6, Z =
21.06, p > .1). 

An alternative measure of performance is efficiency
(e.g., Tanner & Birdsall, 1958), which is defined as the
squared ratio of the participant’s categorization perfor-
mance over that of an ideal observer.

where the d¢ measures are computed according to standard
signal detection theory (e.g., Green & Swets, 1966). The
efficiency level reflects the proportion of energy required
by an ideal observer in order to perform as well as the human
participant. The efficiency of a participant responding op-
timally (equal to an ideal observer) is 1. 

Efficiency =
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Table 3 
Stimulus Bar Labels and Prototype Coordinates (From Left to Right) for Individual Participants

Prototype Coordinates

Condition Participant Bar Labels A B

1 1 BP WBCs serK 177 177 177 207 207 148
2 BP serK WBCs 177 177 177 207 148 207
3 WBCs BP serK 177 177 177 207 207 148
4 WBCs serK BP 177 177 177 207 148 207
5 serK BP WBCs 177 177 177 148 207 207
6 serK WBCs BP 177 177 177 148 207 207

2 1 BP WBCs serK 171 171 171 188 153 153
2 BP serK WBCs 171 171 171 188 153 153
3 WBCs BP serK 171 171 171 153 188 153
4 WBCs serK BP 171 171 171 153 153 188
5 serK BP WBCs 171 171 171 153 188 153
6 serK WBCs BP 171 171 171 153 153 188

3 1 BP WBCs serK 170 170 170 190 150 161
2 BP serK WBCs 170 170 170 190 161 150
3 WBCs BP serK 170 170 170 150 190 161
4 WBCs serK BP 170 170 170 150 161 190
5 serK BP WBCs 170 170 170 161 190 150
6 serK WBCs BP 170 170 170 161 150 190

4 1 BP WBCs serK 162 181 153 186 168 141
2 BP serK WBCs 162 153 181 186 141 168
3 WBCs BP serK 181 162 153 168 186 141
4 WBCs serK BP 181 153 162 168 141 186
5 serK BP WBCs 153 162 181 141 186 168
6 serK WBCs BP 153 181 162 141 168 186

5 1 BP WBCs serK 187 187 168 197 197 157
2 BP serK WBCs 187 168 187 197 157 197
3 WBCs BP serK 187 187 168 197 197 157
4 WBCs serK BP 187 168 187 197 157 197
5 serK BP WBCs 168 187 187 157 197 197
6 serK WBCs BP 168 187 187 157 197 197
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Efficiency is a measure that is superior to percent cor-
rect because it uses a hypothetical ideal observer’s perfor-
mance level as a reference point for each task. Thus we
can compare human performance across conditions that
vary in difficulty. In addition, this alternative measure is
independent of the response criterion. According to signal
detection theory, this is not true of overall accuracy as
measured by percent correct. 

Table 4 also lists the efficiency of participants during their
last experimental session. Median efficiency was 0.81. 

Condition 2. Table 4 lists the accuracy and efficiency
values for Condition 2. All 6 participants correctly cate-
gorized between 78% and 87% of the stimuli. All partici-
pants performed significantly worse than the optimal clas-
sifier ( p < .01). In terms of efficiency, performance was
below that of Condition 1. Median efficiency was 0.46. 

Condition 3. Table 4 also lists the accuracy and effi-
ciency values for Condition 3. Both of these measures in-
dicate that the task was extremely difficult for participants.
On the final day, accuracy ranged from 56.4% to 73.2%

for the 6 participants. (Chance performance is 50%.)
These values are all significantly less than the 92% correct
obtainable by an ideal observer ( p < .01). The efficien-
cies were also very low, with a median of only 0.12. Thus,
in contrast to Conditions 1 and 2, human performance in
Condition 3 was much worse than that of an ideal ob-
server. Note that poor performance occurred even though
each participant had more than 2,000 trials of practice. 

Condition 4. During the last session of Condition 4, ac-
curacy ranged from 66.2% to 74.4% correct (Table 4).
These values are all significantly less than optimal (92%
correct, with p < .01 for each participant). Table 4 also
shows that median efficiency was only 0.15, which was
much worse than in Condition 1 (0.81) or 2 (0.46), and close
to the median efficiency observed in Condition 3 (0.12). 

Condition 5. Table 4 shows that during the last session
of Condition 5, accuracy ranged from 63.8% to 75.8%
correct. Since maximum accuracy for an optimal classi-
fier in this condition is 76% correct, these performance
levels are fairly high. However, the null hypothesis that the

Table 4 
Participant Performance During Final Session in Conditions 1–5

Condition Participant Accuracy (% Correct) Efficiency 

1 1 88.6 0.95
(Ideal accuracy is 90%) 2 88.2 0.92

3 84.8 0.70
4 82.2 0.55
5 70.8 0.21
6 88.6 0.96

Median = 86.5 Median = 0.81

2 1 85.6 0.63
(Ideal accuracy is 91%) 2 78.6 0.35

3 78.4 0.34
4 86.4 0.67
5 84.0 0.54
6 79.4 0.37

Median = 81.7 Median = 0.46

3 1 73.2 0.20
(Ideal accuracy is 92%) 2 68.2 0.12

3 67.6 0.12
4 63.4 0.06
5 56.4 0.01
6 69.6 0.14

Median = 67.9 Median = 0.12

4 1 74.4 0.24
(Ideal accuracy is 92%) 2 69.0 0.13

3 71.8 0.17
4 66.2 0.09
5 73.2 0.21
6 68.2 0.12

Median = 70.4 Median = 0.15

5 1 69.4 0.55
(Ideal accuracy is 76%) 2 75.8 1.03

3 68.8 0.50
4 70.6 0.60
5 72.8 0.76
6 63.8 0.25

Median = 70.0 Median = 0.57
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participant’s performance equaled that of an ideal ob-
server was rejected for 5 out of 6 participants. For Partic-
ipant 2, p < .1, and for the remaining participants, p < .05.
Efficiencies were moderately high, with a median of 0.57. 

Discussion 
Condition 1 demonstrates the important baseline result

that participants (though only half of them in this case) are
able to perform nearly optimally when classifying three-
dimensional continuous-valued stimuli. Condition 2 was
more difficult than Condition 1, and Condition 3 was more
difficult still. Across Conditions 1, 2, and 3, median effi-
ciency decreased from 0.81 to 0.46 to 0.12, respectively,
indicating that the conditions are strongly ordered by dif-
ficulty. Thus, our hypothesis, that categorization difficulty
increases with complexity of the covariance matrix, was
supported by the first three conditions. Two other hypothe-
ses, that categorization difficulty is predicted by optimal
accuracy or class separation, were not supported by these
results. (Compare orders predicted by these factors with
the observed measures summarized in Table 2.)

Condition 4 was designed to test whether performance
levels in Condition 3 were due to the particular orientation
of the optimal bound. Since the median efficiency level in
Condition 4 was much worse than that of Condition 1, ori-
entation of the optimal bound does not seem to be the rel-
evant predictor of task difficulty. Thus, the remaining hy-
potheses are that categorization difficulty is predicted by
covariance complexity or optimal accuracy in the pres-
ence of noise. Condition 5 provides evidence favoring the
complexity hypothesis: Although the sensitivity to inter-
nal noise in Conditions 3, 4, and 5 was nearly equal (Fig-
ure 4), the median efficiency in Condition 5 was much
higher than that of Conditions 3 and 4. Furthermore, al-
though Condition 5 was designed to be more sensitive to
internal noise than Condition 1, the median efficiency for
Condition 5 remained moderately high. Thus, poor per-
formance in Conditions 3 and 4 relative to Conditions 1
and 5 cannot be explained entirely by internal noise. By
process of elimination, the difficulty of the task must be
heavily influenced by the complexity of the category
structure. 

To explore further whether noise could explain the vari-
ation in efficiency across conditions, we consider an ideal-
observer-plus-noise model. Suppose that the only reason
human performance is less than ideal is that the human
system is affected by perceptual noise whereas the ideal
system is not. Then, if we add noise to the ideal system and
recalculate efficiency as

efficiency should approximate unity in all five conditions.
We searched for a noise level at which performance of the
human and ideal observers would match. Minimizing the
sum of squared errors (SSE) between the desired efficien-

cies of 1.0 and the predicted efficiencies based on a noisy
system, we found a best-fitting noise level of 0.19º of vi-
sual angle (SSE = .51) with corresponding predicted effi-
ciencies of 0.99, 0.78, 0.49, 0.55, and 0.96 for Condi-
tions 1–5, respectively. Note that in order to achieve this
fit, we constrained efficiencies to be less than or equal to
1.0. Without this constraint, the model fit improves (SSE =
.24), but the resulting efficiencies are meaningless.2 As a
result of our search, we could not find a noise level that
equalized performance between the human and ideal ob-
servers across conditions. Thus, additional explanatory
factors for the obtained performance pattern must be in-
voked—for example, covariance complexity. 

Altogether, the order of performance across conditions
matches the order predicted by covariance complexity,
with one exception: Performance in Condition 1 was
higher than performance in Condition 5 (0.81 > 0.57) even
though covariance complexity was zero for both condi-
tions. The key difference between these conditions is that
the task in Condition 5 is more sensitive to noise. We just
saw that when noise of the ideal observer is increased, ef-
ficiency in Conditions 1 and 5 match, 0.99 < 0.96. It ap-
pears, then, that although covariance complexity ac-
counted for most of the variation in our data, internal noise
is also an important factor. Indeed, as shown in Figure 4,
the level of internal noise determines an upper bound for
performance. Given that this bound can vary across con-
ditions even when optimal zero-noise performance is
equated, it would be very surprising if noise played no role
in determining categorization difficulty. 

CONCLUSION

Summary
The purpose of this study was to (1) determine what

makes a categorization task difficult by systematically
manipulating category structure, (2) provide a powerful
tool for predicting categorization difficulty, and (3) extend
previous work by using stimuli that are randomly picked
from trivariate normal distributions. We began by intro-
ducing van Emden’s (1971) complexity definition and Boz-
dogan’s (1990) covariance complexity measure. Then, we
manipulated complexity across three experiments and
carefully contrasted the results with those predicted by the
optimal accuracy level and class separation. Our data showed
that as category structure varies, human performance can
be dramatically affected. Median efficiency levels de-
creased from 0.81 to 0.46 to 0.12 as category structure be-
came more complex across our Conditions 1–3. Mean-
while, optimal accuracy level and class separation were poor
predictors of human performance in our tasks. We also
considered the possibility that orientation of the catego-
rization boundary and noise tolerance of an ideal observer
could account for our data. Conditions 4 and 5 ruled out
these possibilities as primary predictors of performance,
but perceptual noise remained an important secondary fac-
tor. Overall, covariance complexity seems to be a power-
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ful tool for predicting categorization difficulty. Note, we
are not arguing that other relevant factors such as optimal
accuracy level or perceptual noise cannot influence the dif-
f iculty of a categorization task. Indeed, these factors
should always be considered in the analysis of categoriza-
tion data (Alfonso-Reese, 2001). Rather, we suggest that
covariance complexity is a major contributing factor. 

The present work extends previous studies by using hun-
dreds of stimuli that vary along three continuous dimen-
sions. In two dimensions, participants often perform
nearly optimally, or at least they typically use a rule of the
same form as the optimal bound (Ashby & Gott, 1988;
Ashby & Maddox, 1990, 1992). In the present study, only
4 participants out of 30 performed optimally with respect
to the percent correct criterion. We conducted preliminary
model fits in an attempt to understand participant response
strategies. We found that only 4 out of 30 participants used
a rule of the same form as the optimal bound—that is, a
linear boundary rather than a quadratic one.3 A valuable
extension to the present study might involve developing a
theory that specifies the different response strategies hu-

mans use to classify stimuli defined in a low- versus high-
dimensional space. 

How do our results compare with those of Shepard et al.
(1961)? In their study, they constructed six problem types
using eight binary-valued stimuli per problem. All problem
types were presented to participants as three-dimensional
problems. However, for Type I problems, the optimal boun-
dary was perpendicular to one dimension, so these problems
reduced to unidimensional tasks. For Type II problems, the
second and third dimensions were perfectly correlated, so
these problems reduced to two-dimensional tasks. Prob-
lems of Types III–VI were truly three-dimensional in that
a participant could not solve the problems without ex-
tracting information from all three stimulus dimensions.
Results indicated that early during training, the increasing
order of difficulty was I < II < (III, IV, V) < VI. With prac-
tice, the order of difficulty became I < II < VI < (III, IV,
V). We would like to calculate covariance complexity as
defined by Bozdogan (1990) for problem Types I–IV to
see if complexity correctly predicts the resulting order of
difficulty. However, such an analysis is complicated be-

Table 5 
Category Structure for Shepard et al. (1961) Problem Types 1–6

Problem Relationship Covariance Matrix* Complexity
Type Between Means Category A Category B Estimate†

I m A Þ m B 0

II m A = m B 0

III m A Þ m B 0.61

IV m A Þ m B 0.38

V m A Þ m B 0.81

VI m A = m B 0

*Covariance matrices were generated by calculating variances and pairwise correlations of each data set consisting
of four stimuli per category. Correlation was calculated using a formula for dichotomous data (Zar, 1999, pp. 401– 404).
†Complexity estimates are undefined for matrices that are not full rank, as in problem Types I and II. Thus, estimates
reported here were calculated using the reduced matrices, where the rows and columns of irrelevant dimensions were
dropped. Also, complexities for Categories A and B are equal for all problem types.
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cause the category stimuli are binary valued rather than
generated from multivariate normal distributions, and other
factors were not held constant across problem types. Nev-
ertheless, we generated rough estimates of covariance
complexity as if the category stimuli were normally dis-
tributed. Category characteristics are summarized in
Table 5. Covariance complexity estimates were zero for the
one-, two-, and three-dimensional problems of Types I, II,
and VI, respectively. If other factors were held constant,
we would predict that these problem types would be easi-
est relative to similar problems of equal dimensionality.
However, the categories in problem Types II and VI share
the special characteristic that the category means are
equal; that is, the categories overlap extensively. Thus, in
Types II and VI problems, memory becomes an important
factor; participants cannot just learn a categorization rule;
rather, they must memorize responses to individual stim-
uli. For the remaining three-dimensional problems, Types
III–V, covariance complexities are 0.61, 0.38, and 0.81, re-
spectively. Thus, the predicted order of difficulty for these
three-dimensional problems is IV < III < V. At first glance,
this prediction does not seem to match results by Shepard
et al., III < IV < V. However, Shepard and his colleagues
admitted that their “experimental design does not permit
an adequate test of possible differences between the indi-
vidual curves for Types III, IV, and V” (note 4, p. 9). They
also stated that “the [error] curve for 4 did generally fall
somewhat below the curves for III and V,” but this may
have been due to individual differences (note 4, p. 9). Our
covariance complexity analysis of their problem types
suggests that a replication of the Shepard et al. study, test-
ing for differences between Types III, IV, and V, might be
worthwhile. 

Future directions. The fact that categorization effi-
ciency is affected by category structure has important
practical implications. For example, in a situation where
information is being presented to a human decision maker,
our results suggest that asymptotic performance might be
affected strongly by the structure of the contrasting cate-
gories. In this case, a simple remapping of diagnostic test
results might greatly improve a physician’s ability to dif-
ferentiate between two diseases, even though in a formal
sense no new information is added by the remapping. Thus,
one suggestion for future work is to show that perfor-
mance in a difficult categorization task can be improved
by carefully remapping stimulus information.

Second, many different models of categorization decision
processes can account for optimal performance (Ashby &
Alfonso-Reese, 1995; Ashby & Maddox, 1993; Nosofsky,
1990). We present a challenge to categorization theorists
to design models that can explain the predicted orderings
found in our five experiments. Recently, several theories
have been proposed that assume human category learning
is mediated by multiple systems (Ashby et al., 1998; Er-
ickson & Kruschke, 1998; Pickering, 1998; Thomas,
1998). Both Ashby et al. (1998) and Erickson and Kruschke
have argued that one system learns explicitly and at least
one learns implicitly. The explicit system is accessible 

to consciousness and engages in an explicit reasoning pro-
cess that may involve hypothesis testing or theory con-
struction and testing. The implicit system is not accessible
to conscious awareness and uses either a procedural-
(Ashby et al., 1998) or an instance-based memory system
(Erickson & Kruschke, 1998). In these models, dimen-
sional rules are learned fairly quickly by the explicit sys-
tem, whereas the optimal linear bounds of Conditions 1–5
would presumably be learned more slowly by the implicit
system. Although the implicit system has the ability to
outperform the explicit system, both systems contribute
to the decision process after learning is completed. Obvi-
ously, fitting these models to our data requires extensive
simulations that are beyond the scope of the present paper.
For now, we conclude that our results are not inconsistent
with the multiple-systems interpretation of category learn-
ing. Clearly, more research on this issue is needed. 

Finally, the present study introduces an information-
theoretic measure, covariance complexity, for predicting
performance on a categorization task. So far this measure
seems promising, but it requires further testing so that we
can understand its power and limitations. 
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NOTES

1. To determine these maximum percent correct criteria, we first re-
duced the category means and covariance matrices to two-dimensional
structures by dropping one set of row and column entries. Then we com-
puted maximum percent correct based on placing a decision criterion
where the likelihood of Category A equals the likelihood of Category B.
This procedure was done three times to find the maximum percent cor-
rect depending on which dimension was being ignored.

2. With a noise level of 0.24º of visual angle, efficiencies were 1.15,
1.02, 0.72, 0.73, and 1.26 for Conditions 1–5, respectively, exceeding
1.0 in three cases.

3. Model fitting results are available upon request from L.A.A.-R.

APPENDIX 

In the main text we consider the possibility that optimal accu-
racy in the presence of internal noise can be used to predict cat-
egorization difficulty. A test of this hypothesis required an esti-
mate of internal noise. Noise estimates were obtained by performing
model fits of the General Linear Classifier (GLC). The GLC is
a decision-bound model (Ashby, 1992; Ashby & Gott, 1988)
based on the assumption that an observer learns to assign re-
sponses to different regions of the perceptual space. When a
stimulus is presented, the observer determines in which region
the percept has fallen and then chooses the associated response.
The decision bound is the partition between competing response
regions. The GLC specifies that the observer uses some plane to
separate the three-dimensional stimulus space into two category
regions. This model requires three free parameters to specify the
plane plus one parameter that represents internal noise. Response
inconsistency is assumed to occur because of perceptual and cri-
terial noise. 

In fitting the GLC to our data, we determine the extent to which
the model can predict categorization behavior. We use maximum
likelihood methods to estimate the unknown parameters. In par-
ticular, we let the vector u represent parameters for the model
being investigated. Then, we use numerical search to find u that
maximizes the log likelihood

where n is the number of data points, P(RA| u ) and P(RB| u ) are
the probabilities of responding “A” and “B” given u , and Ii is an
indicator function that equals 1 if the participant responded “A”
to the ith stimulus and 0 if the participant responded “B.”

The GLC is formalized in the following way (see Ashby, 1992;
Maddox & Ashby, 1993, for more details). First, consider the

stimulus described by the vector x = (x, y, z) ¢. The percept asso-
ciated with a single presentation of this stimulus is represented
by the vector

w = (x + ex, y + ey, z + ez )¢,
where ex, ey, and ez represent noise added during perceptual
processing—that is, “perceptual noise.” The ei are each normally
distributed and mutually independent random variables with
mean 0 and variance s2

p. 
Second, the participant is assumed to select a response by

using the rule

Respond “A” if h(w) < ec ; otherwise respond “B,”

where the discriminant function h(w) is a linear function of the
components of w. The random variable ec is normally distributed
with mean 0 and variance s 2

c representing trial-by-trial variabil-
ity in the response criterion—that is, “criterial noise.” The decision
bound is the set of all points for which h(w) = 0. The probability
of responding “A” on trials when stimulus x is presented equals 

Because of perceptual noise, h(w) varies probabilistically
from trial to trial, even over trials on which the stimulus x is pre-
sented repeatedly. Denote the mean of h(w) by m h(w) and the vari-
ance by s2

h (w). Because h is a linear function of the entries in w,
h(w) is normally distributed. Therefore, 

where F (z) is the cumulative normal distribution function eval-
uated at z. 
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APPENDIX (Continued)

The discriminant function for the general linear classifier is 

It is normally distributed with mean 

and variance 

The perceptual and criterial noise variances are not separately es-
timable (Ashby, 1992). Thus, we define the single free parameter 

The free parameters of the GLC are therefore s2
T , the entries of

the vector b, and the constant c. Our interest in performing these
model fits was to obtain an estimate of s2

T . 

s s sT p c
2 2 2= ¢b b + .

s sh p( ) .w b b2 2= ¢

mh c( )w b w += ¢

h c( ) .w b w += ¢


