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Eight paid volunteers who were unaware of the experimental hy-

potheses and the two authors participated in the experiments.

Two participants did not complete observations for the paint condi-

tion, so there were only eight participants for this condition. All par-

ticipants had normal or corrected to normal acuity and normal color

vision as assessed by an Ishihara color-blindness test.

Stimuli were presented on a computer-controlled calibrated RGB

monitor with 14-bit resolution per channel and a refresh rate of

75 Hz. Participants viewed the stimuli monocularly through a small

square aperture. Their head position was stabilized with a chin

rest placed 86 cm from the monitor.

Background patterns were simulated perspective projection im-

ages of checkerboards (see Figure 1). We generated the shadowed

checkerboard by simulating a 60% decrease in the illumination of

the shadowed region. The penumbra was created with a Gaussian

filter. For the painted checkerboard, the luminance of the checks

along the diagonal was decreased by 60%. Table S1 provides the

chromatic and luminance properties of the checkerboard images.

Test spots were 2.1� 3 0.8� ellipses (perspective projections of

circles) presented for 0.5 s. They were blurred at the edges and

were ramped on and off over .147 s (11 frames) with a Gaussian pro-

file (s = .04 s). Thus, test intensity was static for .21 s.

Discrimination Experiment

Discrimination performance was measured in a two-interval forced-

choice task. The intensity in one interval was set at Ip. We call this the

pedestal intensity. The intensity in the other interval was the pedes-

tal plus an increment, Ip + DI. Participants indicated the interval they

believed contained the increment. Trials alternated between the two

possible locations in each (shadow/paint) condition. After initiating

the experiment with a key press, a fixation mark appeared for 0.4 s

in one of the two locations. The participant shifted gaze to this loca-

tion, and two spots were presented sequentially: One test spot had

the intensity of the pedestal, Ip, and the other had the intensity of the

pedestal plus test, Ip + DI. The order was random, and the partici-

pant’s task was to indicate which interval has the test. After the par-

ticipants indicated their response by pressing a key, a fixation mark

appeared for 0.4 s at the other test location, and the test sequence

was repeated at this location. The participant shifted gaze between

the two test locations in this trial-by-trial fashion until the session

was complete.

One pedestal intensity, Ip, and one context (either painted or shad-

owed checkerboard) were used in an experimental session. Test in-

tensity, DI, was controlled by self-terminating, adaptable staircases

[S1]. Four independent staircases were run: two for the left and two

for the right target locations. For each target location, one three-

down, one-up, and one two-down, one-up staircase ensured effi-

cient sampling of test intensities near threshold performance.

Each staircase terminated after 12 reversals. Sessions for each ped-

estal/context pair were repeated twice: For one of the sessions, the

painted or shadowed diagonal was on the negative oblique; for the

other, it was along the positive. The orientation of the shadow or

paint did not affect performance, and data were pooled across ses-

sions. Each session lasted between 10 and 15 min.

Matching Experiment

The effect of context on appearance was measured with an asym-

metric matching task. Participants matched the appearance of se-

quentially presented test spots located as shown in Figure 1. Spatial

and temporal parameters of the targets were essentially identical to

those used in the discrimination experiment. The only differences

were that (1) the intensity of the spots in the two target intervals at

one location was the same and (2) the participant responded only af-

ter the targets were presented in both target locations (as opposed

once after each target location in the discrimination experiment).
The response was a button press that changed the intensity of the

spot at the second location. The selected intensity change was

then used in the subsequent spot presentation. The participant indi-

cated when a perceptual match had been obtained.

Specific instructions given to the participant in the matching ex-

periment were: ‘‘Make the brightness of the adjustable spot the

same as the fixed spot, disregarding, as much as possible, other

areas of the display. That is, make it look like the amount of light

coming from the adjustable spot is the same as that coming from

the fixed spot.’’ We used these instructions to bias participants

toward relying on a low-level percept.

After initiation of the experiment with a key press, a fixation mark

appeared for 0.4 s in one of the two locations. The participant shifted

gaze to this location, and a spot of fixed intensity was presented

twice at this location. The spot was shown twice so that the stimulus

temporal properties could be equated with the discrimination exper-

iment. After the second presentation, a fixation mark appeared for

0.4 s at the other test location. The participant shifted gaze to this

location, and an adjustable match stimulus was presented twice.

The participant then pressed a key to increase or decrease the inten-

sity of this match stimulus for the next presentation. Observers con-

trolled the size as well as the direction of the intensity change: There

were four available step sizes. The smallest step size was set to

a value near detection threshold determined from pilot experiments,

and the other three step sizes were 3, 20, and 50 times greater.

Presentation of the fixed test and adjustable match continued until

the participant pressed a button indicating that a perceptual match

had been obtained. The participant was then asked to rate, on a scale

of zero (match was unsatisfactory) to three (match was perfect), the

quality of the match. After rating the match, a fixation marker ap-

peared at the fixed-test location and was followed by presentation

of a test of different intensity. There were eight tests of different inten-

sity presented in each session. Each session was repeated at least

four times. There were four different types of sessions: fixed test

inside the shadow/paint (i.e., in the right test location shown in the

images in Figure 1) and fixed test outside the shadow/paint. Session

order was randomized and counter balanced across participants.

Data Analysis

Data Aggregation

Data were pooled across participants. To pool the discrimination

data, we normalized the psychometric data for each participant.

The normalization consisted of division of the test intensities for

each pedestal and each of the four test locations (two for the paint

condition and two for the shadow condition) for each participant

by an estimate of their individual detection threshold. Detection

threshold was taken as the value obtained for Ip = 0 at the test

location outside the shadow in the shadow condition (i.e., the test lo-

cation on the left in the top image of Figure 1). This normalization

eliminated differences in absolute sensitivity across participants. Af-

ter normalizing, we rescaled the test values for all participants by the

average normalizing factor to keep the units commensurate with

physical values.

To estimate just-noticeable intensity differences (JNDs) for each

pedestal and test location, we pooled the trial-by-trial normalized

data across subjects and fit these with cumulative normal functions

by using a maximum-likelihood criterion. The advantage of pooling

the data on a trial-by-trial basis is that we can directly estimate max-

imum-likelihood parameters for the pooled data. Arriving at such an

estimate from individual threshold estimates is more complicated:

There is a varying degree of confidence associated with each thresh-

old, and taking a simple average does not take this into account.

Along with the two parameters of the cumulative normal, we in-

cluded a parameter for key-press errors [S2]. This ‘‘lapse rate’’

was constrained to be less that 5%. Across all participants and ped-

estals, the average lapse rate, estimated from these fits, was 1.9%.

JNDs shown in Figure 2 correspond to 75% correct points estimated



Figure S1. DAIC and DBIC Results for the Full Complement of Models

The two left panels are results from the paint condition, and the two right panels are results from the shadow condition. The three groups of bars

within each plot correspond to the three variants (labeled on the x axis). The six colors within each group correspond to the no-adaptation model

(black), one (red)-, two- (green), three- (blue), four- (yellow), and five- (white) parameter adaptation models. Note the large difference in y axis

scale for the shadow and paint conditions.

S2
from the fits. The error bars were 95% confidence intervals deter-

mined by boot-strapping data from the maximum-likelihood param-

eters [S2].

The matching data were averaged across all participants. Trials in

which the participant could not get a satisfactory match (i.e., where

their rating for the setting was zero) were excluded from the analysis.

A total of 22 trials (w2%) were excluded for this reason.

Model-Fitting Methods

We used numerical search to find model parameters, which we refer

to generically as q, that maximized the likelihood function:

Lðqjdatamatch;datadiscrimÞ. The parameters are the five parameters

in the main text’s Equation 1, which is restated here for convenience:

R = M
ðgI + sÞp

ðgI + sÞq + 1
(1)

To estimate the match-setting variance for each test intensity, we

used the variance of the residuals between the individual matches

and their corresponding means. We allowed for the fact that partic-

ipants’ settings were more variable at some test intensities than

others. Matches to the low and high test intensities tended to be

more variable than those for the midrange test intensities. By using

the Gaussian noise assumption and variance estimated from the re-

siduals, we could calculate the likelihood of observing the individual

match settings.

We fit the three variants (common mechanism, independent adap-

tation, and independent channels) of all 31 parametric adaptation

models described in the main text, plus a no-adaptation model, to

data from the paint and shadow conditions separately. Thus, we fit

a total of 93 models to the data from each condition (there are 93

models including the zero parameter model rather than 94 because

the five parameter adaptation model is the same for the IA and IC

variants). Each model was fit with numerical search over the models’

parameters so that the likelihood of the data given the parameters

could be maximized. The 93 models differed in terms of the number

of free parameters. For clarification of the differences, it is helpful to

consider a concrete example. Suppose we choose the two-
parameter model of adaptation in which parameters g and p of

Equation 1 are allowed to vary across contexts. This adaptation

model limits the change in the shape of the intensity-response func-

tion across the two test locations to that which can be produced by

changes in the values of g and p. Values of the other three parame-

ters, s, q, and M, are yoked to be the same at two test locations. For

the CM variant of this model, g and q are allowed to differ as a func-

tion of test location but are the same for appearance and discrimina-

tion judgments (two adaptation parameters 3 two test locations +

three fixed parameters = seven parameters in all). For the IA variant,

g and q are allowed to differ as a function of test location and form of

judgment (appearance or discrimination) but s, q, and M are the same

at each test location and each form of judgment (two adaptation

parameters 3 two test locations 3 two types of judgment + three

fixed parameters = 11 parameters). For the IC variant, g and q are

allowed to differ as a function of test location and form of judgment

(appearance or discrimination), whereas s, q, and M can vary with

form of judgment but not with test location (two adaptation para-

meters 3 two test locations 3 two types of judgment + three fixed

parameters 3 two types of judgment = 14 parameters). Hillis and

Brainard [S3] provide further details on the modeling approach.

To facilitate the process of finding global likelihood maxima, we fit

the simplest models first (i.e., the no-adaptation model, which has

five free parameters, was fit first) and used parameter values from

these fits as starting points for higher-dimensional searches. For

higher-dimensional searches, we used starting points determined

by fits from nested variants (e.g., we used the best fit from CM var-

iant as starting points for the IA variant) and nested adaptation

models (e.g., we used the fit from single-parameter adaptation

models as starting points for two-parameter adaptation models,

etc.). With few exceptions, both of these approaches led to the

same numerical solution. Thus, there is some assurance that our

fits were determined by the global maxima of the likelihood func-

tions. For the few exceptions that did occur, we chose the parame-

ters that provided higher likelihoods.

To select among the 93 possible models for the paint and shadow

conditions, we used the likelihoods obtained from the maximum



Figure S2. DAIC or DBIC as a Function of

Model Rank

The paint and shadow conditions are shown

in the top four and bottom four panels, re-

spectively. For providing greater detail for

the result of the top-ranked models, the right

panels show results for the top 30 models

(the yellow rectangles in the left panels indi-

cate the regions that are shown in the right

panels). Different symbol colors represent

the three model variants. Note the large dif-

ference in the y axis scale for the paint and

shadow conditions.

S3
likelihood fits to calculate information theoretic criteria [S4–S6] and

employed cross-validation techniques.

Model-Fitting Results

We computed an information criterion, AIC [S4], and the Bayesian

information criterion, BIC [S6], by using the following equations:

AIC = 2 2ln
�
L
�
ĥjdatamatch;datadiscrimÞÞ+ 2K

BIC = 2 2ln
�
L
�
ĥjdatamatch;datadiscrimÞÞ+ K,lnðnÞ

in which L is the likelihood, ĥ are estimated maximum-likelihood

parameters, K is the number of free parameters, and n are the num-

ber of data points (which we counted as the number of matches plus
the number of forced-choice judgments). Figure S1 shows the

results. The bar plots in the top four panels show DAIC and DBIC

(DAIC = AIC 2 minðAICÞand DBIC = BIC 2 minðBICÞ) for the full com-

plement of models considered. The AIC and BIC values are esti-

mates of the expected relative distance between the model and

the true model. Thus, smaller values of DAIC and DBIC indicate bet-

ter models. Within the set of models considered, the most preferred

model by the AIC criterion has a DAIC value of zero, and the most

preferred model by the BIC criterion has a DBIC value of zero. The

three groups of bars within each plot correspond to the three vari-

ants (labeled on the x axis). The six colors within each group corre-

spond to the no-adaptation model and the one- to five-parameter

adaptation models (note that the no-adaptation model is the same

for all three model variants and that the five parameter model is



Figure S3. DAIC and DBIC of the ‘‘Best’’ Models as a Function of Number of Parameters

‘‘Best’’ here refers to the model with the smallest DAIC or DBIC value within the set of models that had n parameters. As shown in Table S2, there

is some overlap of the number of model parameters across the three variants considered (e.g., a one-parameter IA model and three three-

parameter CM models each have the same number of parameters: eight). These plots are intended to emphasize the fact that the DAIC and

DBIC minima for the paint condition occur at a fewer number of model parameters (eight) than the shadow condition (eighteen). The two left

and two rights panels show results for the paint and shadow conditions, respectively. The fits associated with each of these models can be

seen at http://color.psych.upenn.edu/supplements/shadowpaint/mainwebshdpnt.html.

S4
the same for the IA and IC variants). The two left panels are results

from the paint condition, and two right panels are results from the

shadow condition. The two top and two bottom panels show AIC

and BIC results, respectively.

The first result obtained from this model-selection analysis is the

rejection of the CM variants in favor of the IA and IC variants. The

AIC results clearly favor the IA and IC variants over the CM variant,

for both paint and shadow conditions. This is indicated in the bar

plots by the fact that the bars in the IA and IC groups generally

have smaller values than the bars for the CM group. The BIC also fa-

vors the IA and IC variants for the shadow condition. For the paint

condition, the BIC analysis is less clear cut by visual inspection of

this bar plot. Figure S2 replots the data from Figure S1 in a manner

that emphasizes the comparison across variants. The x axis of these

plots is the overall model rank. The y axis is the DAIC or DBIC value.

The top four panels are results from the paint condition, and bottom

four panels are results from the shadow condition. The two right

panels within each block are ‘‘zoomed-in’’ versions of the left panels

so that greater detail on the results for the models ranked in the top

30 could be provided. Different symbols represent the three vari-

ants. We see that the best models tend to be the IA and IC variants:

Red and black symbols are clustered toward the bottom left of each

plot. The only exception is the DBIC values for the paint condition. In

this case, there are several three-parameter CM models that are

ranked in the top ten. However, there is a clear break between the

top-ranked IA model (which was the model that allowed only g to
vary across context) and the top-ranked CM models. Overall, CM

variants are soundly rejected in favor of the more complex IA and

IC variants for both the paint or shadow conditions.

A second feature of the analysis is that the CM variants are re-

jected more decisively for the shadow condition than for the paint

condition. In this regard, note that the range of DAIC and DBIC

values in Figures S1 and S2 is much greater for the shadow than

for the paint condition. Related to this is the fact that both criteria in-

dicate that more complex models of adaptation are required for the

shadow than for the paint condition. To highlight this, we grouped

the 93 models by their overall number of free parameters and then

identified the best model within each group. Figure S3 plots the

DAIC or DBIC values of the best model within each group as a func-

tion of number of parameters. For the paint condition, the minima

occur at eight parameters for both DAIC and DBIC. The minima for

the shadow condition occur at 18 parameters. The fits associated

with each of these models can be seen at http://color.psych.

upenn.edu/supplements/shadowpaint/mainwebshdpnt.html.

Table S2 provides DAIC and DBIC values for the no adaptation

model and the best one- to five-parameter models for each of the

variants. For both AIC and BIC, the top model for the shadow condi-

tion was a four-parameter, IC model. There was essentially no sup-

port for any simpler model. Burham and Anderson [S5] indicate that

when there are fewer than 100 models under consideration, DAIC >

10 provides essentially no support for the model. By this criterion,

only the top three models received nonnegligible support, and these

http://color.psych.upenn.edu/supplements/shadowpaint/mainwebshdpnt.html
http://color.psych.upenn.edu/supplements/shadowpaint/mainwebshdpnt.html
http://color.psych.upenn.edu/supplements/shadowpaint/mainwebshdpnt.html


Table S1. Color Coordinates of Checkerboard Stimuli

Black in Shadow Black in Light/White in Shadow White in Light Background

L 0.013734 0.023089 0.038135 0.030512

M 0.011268 0.018972 0.031297 0.025038

S 0.0083938 0.014183 0.023343 0.018666

X .33 .33 .33 .33

Y .33 .33 .33 .33

Y 9.2 15.1 24.9 20

Isomerization Rates

R*L 2212 3912 6645 5260

R*M 1566 2790 4748 3754

R*S 247 446 763 601

Isomerization Totals for Test Duration and Size

R*L 138.09 3 105 244.2 3 105 414.9 3 *105 328.4 3 105

R*M 48.89 3 105 87.1 3 105 148.2 3 105 117.2 3 105

R*S 0.71 3 105 1.3 3 105 2.2 3 105 1.74 3 105

S5
are all four-parameter IC models. By AIC, the most preferred models

in the paint condition were one-, two-, and three-parameter models

of the IA variant. By the BIC, the IA variant of the one-parameter g

model was most preferred by a considerable margin.

Supplemental References

S1. Treutwein, B. (1995). Adaptive psychophysical procedures.

Vision Res. 35, 2503–2522.

S2. Wichmann, F.W., and Hill, N.J. (2001). The psychometric func-

tion: II.Bootstrap-based confidence intervals and sampling.

Percept. Psychophys. 63, 1314–1329.

S3. Hillis, J.M., and Brainard, D.H. (2007). Do common mechanisms

of adaptation mediate color discrimination and appearance?

Contrast adaptation. J. Opt. Soc. Am. A 24, 2122–2133.

S4. Akaike, H. (1974). A new look at the statistical model identifica-

tion. IEEE Trans. Automat. Contr. 19, 716–723.

S5. Burnham, K.P., and Anderson, D.R. (2002). Model Selection and

Multi-model Inference (New York: Springer-Verlag).

S6. Schwartz, G. (1978). Estimating the dimension of a model.

Annals of Statistics 6, 461–464.
Table S2. Information-Criteria Results

Variant

Adaptation

Model

Number of

Parameters

Paint Shadow

DAIC DBIC DAIC DBIC

ALL None 5 125.44 99.27 1114.86 997.52

CM s 6 55.78 38.30 836.72 728.41

CM g, M 7 32.33 23.55 576.06 476.78

CM g, p, q 8 20.19 20.09 289.12 198.87

CM g, p, q, M 9 21.75 30.34 252.47 171.24

CM g, s, p, q, M 10 23.69 40.97 253.98 181.78

IA g 8 0.10 0.00 150.16 59.90

IA g, s 11 0.00 25.98 91.63 28.45

IA g, q, M 14 1.42 53.46 56.34 20.24

IA g, s, p, M 17 6.70 84.82 35.97 26.95

IC g 12 8.10 42.76 158.16 104.01

IC g, q 14 3.92 55.97 61.47 25.37

IC g, q, M 16 5.04 74.46 36.18 18.13

IC g, s, p, M 18 7.98 94.79 0.00 0.00

IA/IC g, s, p, q, M 20 11.19 115.38 12.87 30.92
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