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Black Light: How Sensors Filter Spectral Variation of
the Illuminant

DAVID H. BRAINARD, BRIAN A. WANDELL, anp WILLIAM B. COWAN

Abstract—Visual sensor responses may be used to classify objects on
the basis of their surface reflectance functions. In a color image, the
image data are represented as a vector of sensor responses at each point
in the image. This vector depends both on the surface reflectance func-
tion and on the spectral power distribution of the ambient illumina-
tion. Algorithms designed to classify objects on the basis of their sur-
face reflectance functions typically attempt to overcome the dependence
of the sensor responses on the illuminant by integrating ‘sensor data
collected from multiple surfaces.

In machine vision applications, we show that it is often possible to
design the sensor spectral responsivities so that the vector direction of
the sensor responses does not depend upon the illuminant. We state the
conditions under which this is possible and perform an illustrative cal-
culation.

In biological systems, where the sensor responsivities are fixed, we
show that some changes in the illumination cause no change in the sen-
sor responses. We call such ch t black ill, ts. It
is possible to express any illuminant as the sum of two unique compo-
nents. One component is a black illuminant. We call the second com-
ponent the visible component. The visible component of an illuminant
completely characterizes the effect of the illuminant on the vector of
Sensor responses.

in illu

INTRODUCTION

USEFUL function of a color visual system is to clas-
sify objects on the basis of their surface reflectance
functions. The spectral power distribution of the color
signal arriving at the visual system depends on both the
surface reflectance functions of the imaged objects and
the spectral power distributions of the illuminants. This
observation is often used to argue that it is impossible to
estimate the surface reflectance function of an object from
the vector of sensor responses at a single location in the
image. Most algorithms designed to classify objects on
the basis of their surface reflectance functions assume that
the illuminant varies slowly across the image. They in-
corporate information from multiple locations in the im-
age to separate the effects of surface reflectance functions
and the illuminant spectral power distribution [1]-[9].
We reexamine the dependence of the color signal on the
surface and illuminant. We show that when the surface
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reflectance functions and illuminant spectral power distri-
butions encountered by the visual system are described by
certain small-dimensional linear models, the color signal
contains enough information so that the vector of sensor
responses at each location in the image can be used di-
rectly to classify objects on the basis of their surface re-
flectance functions without any confound from the spec-
tral power distribution of the illuminant. To do this, the
spectral responsivities of the sensors must be matched to
the surface and illuminant models. When the sensors, sur-
faces, and illuminants are matched, the vector direction
of the sensor responses depends on the surface reflectance
function but not on the spectral power distribution of the
illuminant.

In the first part of this paper we describe conditions un-
der which it is possible to match the sensors to the surface
and illuminant models so that the vector direction of the
sensor responses remains fixed as the spectral power dis-
tribution of the illuminant is varied. As an example, we
show that these conditions hold for a realistic model of
natural surfaces and daylight illuminants. We carry out
the design of sensor responsivities for this model. These
Sensor responsivities remove, up to scalar multiplication,
the dependence of the sensor responses on the spectral
power distribution of the illuminant. In this sense, the
sensors act to filter illuminant variation.

The analysis in the first part of the paper is useful for
machine vision applications when the sensor spectral re-
sponsivities of the visual system may be chosen. In the
study of biological visual systems, the sensor responsiv-
ities are given by the biology. In the second part of this
paper, we analyze the role of any given sensor responsiv-
ities in filtering illuminant variation. Rather than asking
what set of visual sensors filter a given class of illuminant
variation, we ask what class of illuminant variations are
filtered by a given set of visual sensors. When the surface
reflectance functions encountered by the visual system are
described by a small-dimensional linear model, there are
a large number of illuminant variations that cause no
change in the sensor responses. We call such variations
black illuminants. Given a set of sensor responsivities and
a linear model for surfaces, we show how to calculate the
black illuminants.

It is possible to express any illuminant as the sum of
two unique components. One component is a black illu-
minant. We call the second component the visible com-
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ponent. The visible component of an illuminant com-
pletely characterizes the effect of the illuminant on the
vector of sensor responses. As an example, we compute
the black illuminants for the human cones and a realistic
model for natural surfaces. We find the black illuminant
and visible components of several illuminants.

DEFINITIONS AND NOTATION

We consider the situation where the light incident at the
camera or eye is due to an illuminant reflected from a
surface. An illuminant is described by its spectral power
distribution E(\,)), which specifies the illuminant power
at each wavelength. A surface is described by its surface
reflectance function S(\,), which describes the fraction
of light reflected at each wavelength. The light incident
at the camera or eye is called the color signal and is de-
scribed by its spectral power distribution C(A,). We mea-
sure all functions of wavelength at N, evenly spaced sam-
ple wavelengths A\, with wavelength spacing AN. The
relation between the illuminant spectral power distribu-
tion, surface reflectance function, and color signal spec-
tral power distribution is given by

C\) = E(N) S(N). (1)

A visual system contains several classes of color sen-
sors. We use the subscript & to denote the kth sensor class,
and we denote the number of sensor classes by P. For the
human eye, P = 3 as there are three classes of cones in
the retina. The information available to the visual system
at a single point is contained in the vector of sensor re-
sponses whose entries are r, k = 1, * -+, P. The re-
sponse r; of a sensor in the kth sensor class depends on
the spectral power distribution of the color signal and the
spectral responsivity of the sensor class. The spectral re-
sponsivity of the kth sensor class R,(\,) specifies the
strength of the sensor response per unit energy as a func-
tion of wavelength. The sensor response is computed as

Nx

o= % RdN) CO\) AN

M

= 2 Ri(\) S(\) E(N,) AN (2)
To simplify notation, we suppress the factor AN by as-
suming that it is incorporated into the physical units.

If the surface reflectance functions and illuminant spec-
tral power distributions encountered by a visual system
are unrestricted, then any color signal can arise from any
surface. The sensor responses cannot be used to classify
objects based on their surface reflectance functions unless
some additional constraints are used. Recent work [2]-
[6], [10], [11] is based on the assumption that the surface
reflectance functions and illuminant spectral power distri-
butions encountered by the visual system are restricted.
In particular, this work has assumed that the surfaces and
illuminants are described by small-dimensional linear
models. We say that the surfaces are described by a linear
model if there exist N linearly independent basis functions
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S;(N,) and weights o; such that for any surface S(\,) en-
countered by the visual system
N

S(\,) = Z. 08 (\y)-

(3)

We call N the dimension of the linear model for surfaces.
Similarly, we say that the illuminants are described by a
linear model if there exist M linearly independent basis
functions E;(\,) and weights ¢; such that for any illumi-
nant E(\,)

(4)

We call M the dimension of the linear model for illumi-
nants.

When the surfaces and illuminants are described by lin-
ear models, then the color signals formed when one of the
illuminants reflects from one of the surfaces are also de-
scribed by a linear model. For any such color signal, we
have

M N
C()\n) = i§1 jgl eiajEi(>‘n) Sj()‘n) = Z KijCij()\n)'
(5)

The basis functions for the color signal linear model are
Cii(N,) = E;(N,) §;(\,). The weights «; on each of the
color signal basis functions are determined by the weights
g; and ¢; of the underlying surface and illuminant. The
dimension of the linear model for the color signals is at
most NM. If the C;(\,) are not linearly independent the
dimension will be less than NM.

FILTERING ILLUMINANT VARIATION
Basic Ideas

When the surfaces and illuminants are described by
small-dimensional linear models, the color signal is de-
scribed by the sum in (5). It is useful to separate the terms
of this sum into two groups: one group that contains terms
that depend on the first basis function of the illuminant,
and a second group that contains terms that depend on the
other basis functions of the illuminant:

N

C(\,) = L‘E Kl,clj(x,,)} + {% % K,.,c,,(xn)}

i=2j=1

(6)
We call the first group the principal illuminant term, and
the second group the illuminant variation term. As the
spectral power distribution of the illuminant varies, the
only variation in the principal illuminant term is multipli-
cation by the scalar ¢,. If a visual system’s sensors re-
spond to the contribution to the color signal from the prin-
cipal illuminant term but not to the contribution from the
illuminant variation term then the vector of sensor re-
sponses to any surface will remain the same, up to the
scale factor ¢, as the illuminant is varied. For such sen-
sors the vector direction of the sensor responses can be
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used to classify objects on the basis of their surface re-
flectance. Conversely, variation in the vector direction of
the sensor responses can be relied upon to indicate vari-
ation in object surface reflectance. We say that such sen-
sors filter the variation in the illuminant spectral power
distribution.

Under what conditions can we design sensor spectral
responsivities so that the sensors respond to the contri-
bution to the color signal of the principal illuminant term
and not to the contribution of the illuminant variation
term? In the Appendix we show that if each of the basis
functions C;;(X,),-i =2, +++ M,j =1, -+ Nin the
illuminant variation term is linearly independent of the
basis functions Ci;(\,), j = 1, - -+ N in the principal
illuminant term, then there exist such sensor spectral re-
sponsivities. This condition will be met for many choices
of surface and illuminant basis functions. This condition
will not be met, however, when the surface and illuminant
linear models are identical. In this case, C;(A,) = C;(\,)
so that the principal illuminant term and the illuminant
variation term contain a common basis function.

When the basis functions of the illuminant variation
term are linearly independent of the basis functions of the
principal illuminant term, we can design sensor spectral
responsivities that filter the illuminant variation. If the P
sensors of a visual system all filter the illuminant variation
term, then the sensor responses r; to any color signal en-
countered by the visual system are given by

Na Na N

fe = ,Z:l R.(N,) C(N,) = 'El Rk()\n)jgl Klelj(>\n)~

(7)
Equation (7) does not determine the sensor responsivities
uniquely. There will generally be many different sets of
P sensor responsivities for which (7) holds. Not all of
these sets are equally useful for classifying objects on the
basis of surface reflectance since some sets of sensor re-
sponsivities will fail to preserve information about the
surfaces contained in the principal illuminant term. If we
view the color signal weights «; as a N dimensional vec-
tor, (7) defines a matrix mapping from this vector to the
P dimensional vector of sensor responses. The kjth entry
of the matrix is Z\~ ) R (\,) C);(\,). If this matrix does
not have maximal rank, then the vector of sensor re-
sponses does not contain as much information as possible
about the color signal weights in the principal illuminant
term. If P = N and this matrix has maximal rank, then
the vector of sensor responses can be used to recover the
weights «,;. Since k;; = €,0;, we can use the «;; to find
the surface reflectance function weights o; up to an un-
known scale factor €,. The o; can be used reconstruct the
relative surface reflectance function using (3). Under what
conditions can we find P = N sensor responsivities such
that the matrix mapping the «,; to the r, has maximal rank?
In the Appendix, we show that if the color signal basis
functions Cy;(\,) in the principal illuminant term are lin-
early independent, it is possible to find such sensor re-

sponsivities. We also show how, when the appropriate
conditions on the C;(\,) are met, to compute sensor re-
sponsivities such that the sensors do not respond to the
illuminant variation term of the color signal and such that
the vector of sensor responses can be used to recover the
vector of weights «,;.

An Example Calculation

As an example, we have designed a set of sensor re-
sponsivities that filter the illuminant variation of natural
daylight when the surfaces are described by a realistic lin-
ear model. Cohen [12] analyzed the surface reflectance
functions of a large set of Munsell chips and concluded
that they are well-described by a linear model with be-
tween three and six dimensions. Maloney [11], [13] ex-
tended Cohen’s analysis to include a large set of natural
surface reflectance functions measured by Krinov [14].
Maloney concluded that this larger set of surfaces is well-
described by the same linear model. Following Maloney,
we computed basis functions for a three-dimensional lin-
ear model for 462 Munsell chips measured by Nickerson
[15]. This linear model also describes the surface reflec-
tance functions measured by Krinov. Judd, MacAdam,
and Wyszecki [16] analyzed a large set of daylight spec-
tral power distributions and concluded they are well-de-
scribed by a linear model with between three and five di-
mensions. They provide basis functions for a three-
dimensional linear mode! for daylight illumination. For
these linear models for surfaces and illuminants, we ver-
ified that the basis functions in the illuminant variation
term are linearly independent of the basis functions in the
principal illuminant term and that the basis functions in
the principal illuminant term are linearly independent of
each other. Thus, we were able to calculate a set of three
sensor responsivities that filter the variation in daylight
illumination when the surfaces are described by our three-
dimensional linear model. These sensors also allow the
recovery of the three weights «,; for the basis functions of
the principal illuminant term.

In Fig. 1 we plot the three sensor responsivities that
filter daylight variation. These sensor responsivities could
be implemented in a machine vision system designed to
classify objects on the basis of their surface reflectance
functions. The negative sensor responsivities can be im-
plemented by taking the difference between the responses
of two sensors, each with nonnegative responsivity at
every wavelength. Moreover, exciting new developments
in spectroradiometer technology [17] may make it possi-
ble to measure the entire color signal spectral power dis-
tribution in real-time machine vision systems. In this case,
the separation of the principal illuminant and illuminant
variation terms could be handled with software.

DisCussION

Comparison to Human Cone Responsivities

The three sensor responsivities shown in Fig. 1 are more
sharply peaked than the human sensor responsivities. Fig.
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Fig. 1. Three sensor spectral responsivities that filter the illuminant vari-
ation term when the surfaces are described by a three-dimensional linear
model for natural surfaces and the illuminants are described by the three-
dimensional linear model for daylight provided by Judd, MacAdam, and
Wyszecki. These sensors also allow the recovery of the color signal basis
function weights k,; in the principal illuminant term.

2 shows the Smith and Pokorny estimate of the human
middle-wavelength cone responsivity tabulated by Boyn-
ton {18]. The figure also shows the best linear fit to this
responsivity using the computed sensor responsivities.
The fit is poor. This suggests that the human cones do not
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Fig. 2. Smith and Pokorny estimate of the human middle cone sensor re-
sponsivity along with the best linear fit using the spectral sensor respon-
sivities computed in Fig. 1.

completely filter the variation in daylight illumination. We
show in the next section that the vector of human cone
responses is in fact sensitive to variations in daylight il-
lumination.

There may be several reasons why the human cone re-
sponsivities are unlike the spectral responsivities shown
in Fig. 1. First, all biological photopigments studied to
date have spectral responsivity functions that are slowly
varying functions of wavelength. Dartnall and others have
speculated that the biochemistry of photopigments re-
quires that the human cones have this property [19]-[22].
Thus, one reason why biological cones do not completely
filter variation in daylight illumination may be that it is
difficult to construct photopigment molecules with the ap-
propriate responsivities.

A second reason may be that the only design goal of
biological visual systems is not to classify objects on the
basis of their surface reflectance functions. We have pur-
posefully designed sensor spectral responsivities that
eliminate all information about illuminant variation from
the vector of sensor responses. But the spectral power dis-
tribution of the illuminant may provide useful information
to an organism: perhaps it is indicative of the time of day
or of the weather conditions. A biological visual system
may want sensors that permit it to notice variation in the
illuminant. In that case, subsequent processing of the sen-
sor responses would be required to classify objects on the
basis of their surface reflectance.

Other Applications of Filtering

From a formal point of view there is nothing special
about the particular division of the color signal into the
principal illuminant term and the iluminant variation term.
This grouping is useful when the design goal is to filter
the effects of illuminant variation from the sensor re-
sponses. If we group the color signal basis functions dif-
ferently, we can perform the same analysis and try to find
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sensor spectral responsivities that filter other parts of the
color signal. For example, the algorithm developed by
Maloney and Wandell [4], [5], [13] requires that the sur-
faces and illuminants be described by linear models with
not more than P — 1 and P dimensions, respectively,
where P is the number of sensor classes. If the linear
models that describe surfaces and illuminants have N >
P — 1 and M > P dimensions, respectively, then we can
group the terms in the color signal as follows:
P P-1

C(\,) = [Z 2 K,»,c,.,(x")} + Lé”i K,.jc,,.(xn)].

(3)

If the each of the basis functions in the second group are
linearly independent of the basis functions in the first
group, then we can find sensor responsivities that filter
the extra dimensions in the surface and illuminant linear
models. Such sensor responsivities would optimize the
performance of the Maloney and Wandell algorithm.

Analogy to Prefiltering

The role of the sensor responsivities in filtering the color
signal is analogous to the role of prefiltering in digital
sampling applications. When a signal is to be sampled at
discrete points, it is common to filter the signal before the
sampling operation is performed. This prefiltering limits
the signal’s bandwidth and prevents aliasing distortion.
The effect of prefiltering is to remove some of the degrees
of freedom in the input signal. Suppose the original signal
is band-limited and periodic. Then we can express this
signal as the weighted sum of a finite number N of Fourier
basis functions. If there are only N/2 sample measure-
ments, we may decide to use a low-pass filter to remove
N/2 of the Fourier basis terms. The N/2 sample mea-
surements are adequate to reconstruct the reduced signal.
If one does not eliminate the additional terms, then the
input signal has more degrees of freedom than the number
of samples. In this case, the mapping from signals to sam-
ple responses is many to one and the sample values cannot
be uniquely inverted to estimate the signal. Prefiltering
serves to match the number of degrees of freedom in the
signal to the number of sample measurements.

There is a precise analogy between prefiltering a signal
to avoid aliasing and the method we describe here. Pre-
filtering the signal renders the sample values insensitive
to the higher frequency Fourier basis terms. Our choice
of sensor spectral responsivities renders the sensor re-
sponses insensitive to the illuminant variation term. The
proper choice of low-pass filter permits the sample values
to be used to reconstruct the low-frequency component of
the input signal. The proper choice of sensor responsivi-
ties permits the sensor responses to be used to reconstruct
the component of the color signal described by the prin-
cipal illuminant term. The classic low-pass prefiltering
analysis is a special case of the general analysis presented
here. The low-pass analysis is applicable to convolution
systems. Since the sensor responses are not the output of

a convolution system, we have used methods applicable
to general linear systems.

BLACK ILLUMINANTS
Basic Ideas

We have shown how to select sensor responsivities that
respond to some of the color signal basis functions and
filter the others. The analysis can be used when it is pos-
sible to design the sensor responsivities. When we ana-
lyze human performance, the sensor responsivities are de-
termined by biology and are not under our control. In this
section, we extend our analysis to clarify the role played
by any given sensor responsivities in filtering illuminant
variation.

If a visual system has only a few classes of sensors and
the surface reflectance functions encountered by the vi-
sual system are restricted, then there will be many pairs
of physically distinct illuminants such that the sensor re-
sponses to any surface are unchanged as the illuminant is
changed from one to the other. We call the difference be-
tween such a pair of illuminants a black illuminant. A
black illuminant is always defined with respect to an en-
semble of surfaces and a set of sensor responsivities. The
concept of a black illuminant is closely related to the con-
cept of a metameric black surface studied by Wyszecki
and Stiles [23]-[25] and the forbidden subspace analysis
in West and Brill [26]. All black illuminants are positive
at some wavelengths and negative at others and thus can-
not be realized physically. Nevertheless, they can be used
to construct pairs of physically realizable illuminants that
leave the sensor responses to any surface unchanged. The
illuminant pair is constructed by adding the spectral power
distribution of a black illuminant to a physically realiz-
able illuminant.

If the surfaces encountered by a visual system are de-
scribed by a small-dimensional linear model, it is possible
to compute all the black illuminants for the visual system.
A black illuminant E(\,) must satisfy the equation

Nx

0= % R(\)S() EO\) (9)
for all surface reflectance basis functions S;(A,) and all
sensor responsivities R; (X, ). Conversely, any illuminant
that satisfies (9) is a black illuminant. Equation (9) defines
a set of linear constraints on the black illuminants. Thus,
in this case the black illuminants are a linear subspace of
all possible illuminants. In the Appendix, we describe how
to compute a set of basis functions for this subspace.

We call the subspace of illuminants orthogonal to the
black illuminants the subspace of visible components. Any
illuminant can be written uniquely as the sum of two com-
ponents, one in each of these orthogonal subspaces. This
decomposition of an illuminant reveals the effect of the
sensor responsivities in filtering the illuminant. The black
illuminant component is completely filtered by the sen-
sors. The sensor responses depend only on the visible
component.
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An Example Calculation

An an example, we have computed basis functions for
the black illuminant and visible component subspaces
using our three-dimensional linear model for natural sur-
faces and the human cone responsivities. We used the
Smith and Pokorny estimates of the cone responsivities
tabulated by Boynton [18]. In our calculations, we rep-
resent all functions of wavelength by their values at 10
nm intervals between 400 and 700 nm. Thus, the space
of all illuminants has 31 dimensions. Our calculations re-
veal that for this example the subspace of black illumi-
nants has 22 dimensions, while the subspace of visible
illuminants has nine dimensions.

The computed basis functions allow us to find spectral
power distributions that are completely contained in the
subspaces of black illuminants and visible components.
Fig. 3 shows an illuminant from each subspace. The top
panel shows a black illuminant. The bottom panel shows
an illuminant from the visible component subspace. For
the human cones and our linear model for surfaces, the
black illuminants typically have spectral power distribu-
tions that are rapidly varying functions of wavelength. The
visible component spectral power distributions are typi-
cally more smoothly varying.

The black illuminant analysis is useful because any il-
luminant can be written uniquely as the sum of a black
illuminant and an illuminant from the visible component
subspace. Only the visible component effects the vector
of sensor responses. We can find the black illuminant and
visible components of any illuminant by expressing the
illuminant spectral power distribution as the weighted sum
of the basis functions for the two subspaces and separat-
ing the two components in the sum. Fig. 4 shows several
examples. In the first two rows, two physically nonreal-
izable illuminants with sinusoidal spectral power distri-
butions are decomposed. These decompositions also sug-
gest that the space of black illuminants contains mostly
functions that vary rapidly as a function of wavelength,
while the space of visible illuminants contains more
smoothly varying functions. In the third row, a spectral
power distribution which is typical of a change in daylight
illumination is decomposed [16]. The variation in day-
light contains a significant visible component. This shows
that the human cone responsivities do not filter all varia-
tion in daylight illumination. In the last row, a fluorescent
illuminant spectral power distribution is decomposed. The
fluorescent illuminant spectral power distribution con-
tains several sharp spikes. The visible component is much
more smoothly varying: the cone responsivities do filter
the sharp spikes of the fluorescent illuminant. Note that
the color rendering properties of an illuminant only de-
pend on its visible component. To decide whether an ar-
tificial illuminant will have color rendering properties
similar to those of daylight illuminants, for example, the
visible components of each should be compared. Our
analysis provides a way to compare illuminants that takes
the surface reflectances and sensor responsivities into ac-
count.
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Fig. 3. Examples of illuminants from the black illuminant subspace (top)
and visible component subspace (bottom). The basis functions for the
subspaces were computed with respect to a three-dimensional linear
model for natural surfaces and the human cone spectral responsivities.

Discussion: Relation to Other Work

The analysis of illuminants into two components pre-
sented in this section is closely related to the work of Wy-
szecki and Stiles [23]-[25] who studied metameric black
surfaces. A metameric black surface is analogous to a
black illuminant. A metameric black surface is defined
with respect to a particular illuminant. It is a physically
nonrealizable surface that when added to any other sur-
face causes no change in the vector of sensor responses.
By reversing the role of surfaces and illuminants in our
analysis, we can find the metameric black surfaces with
respect to any linear model for illuminants.

Another related analysis is that of Cohen and Kappauf
[27], [28]. They studied the effect of the human cone re-
sponsivities in filtering the color signal without consid-
ering the underlying surfaces and illuminants. They point
out that any color signal can be written as the sum of two
orthogonal components, which they call a metameric
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Fig. 4. Analysis of illuminants into black and visible components. Each
row shows an illuminant spectral power distribution along with the spec-
tral power distributions of its black illuminant and visible components.
First row: low-frequency sinusoidal illuminant. Second row: high-fre-
quency sinusoidal illuminant. Third row: variation of daylight illumi-
nation. Fourth row: fluorescent illuminant.
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black and a fundamental metamer. The metameric black
component is filtered by the sensors. The sensor re-
sponses depend only on the fundamental metamer.

SUMMARY

This paper has considered the role of the sensors in fil-
tering illuminant variation. In the first part of the paper,
we showed that the color signal can contain enough in-
formation to allow the proper sensors to separate the sur-
face reflectance function from the illuminant spectral
power distribution. In the second part of the paper, we
showed that the sensors always act to filter some compo-
nent of the illuminant. These two analyses help clarify
both what information about the environment is contained
in the color signal and the important role of the sensor
spectral responsivities in visual processing.

AprPENDIX: COMPUTATIONAL METHODS
Introduction and Notation

We use vectors and matrix notation to describe the
computational procedures. Let e be a N, dimensional col-
umn vector whose nth entry is E()\,). Let s be a N, di-
mensional column vector whose nth entry is S(A,,). Let ¢
be a N, dimensional column vector whose nth entry is
C(\,). In addition, let S be an N, by N, diagonal matrix
whose nth diagonal entry is S(A,). Then we can write (1)
as

(10)

Let r be a P dimensional column whose kth entry is r,.
Let R by a P by N, matrix whose knth entry is R, (\,).
The rows of R are the P sensor spectral responsivity func-
tions. Using this matrix notation, (2) becomes

r=Rc =RSe =Le (11)

where L, = RS is a P by N, matrix that describes the
relation between the illuminant and the sensor responses
for a particular surface s.

We can also use vector and matrix notation to express
the color signal linear model of (5). We write

¢ = Se.

(12)

k is an NM dimensional column vector whose entries are
the weights «;;. C,, is an Ny by NM matrix whose columns,
denoted by ¢;;, are the vector representations of the color
signal basis functions C;;(\,) = E;(N,) S;(\,) ordered
lexiographically by the values of i and j. We call the ¢;
the basis vectors for the color signal linear model.

¢ = C,x.

Sensor Responsivities

How can we compute P sensor responsivities that filter
the illuminant variation? Here we describe the calculation
for the case when the number of sensors P is equal to the
number of dimensjons in surface linear model N. The ex-
tension to the case P # N is straightforward.

Recall that the rows of the matrix R are the P = N
sensor responsivities and that the columns of C,, are the
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NM color signal basis vectors. To calculate the effects of
the color signal basis vectors on the sensor responses, we
compute

® = RC,, (13)

@ is an N by NM matrix. Each column of ® is the vector
of sensor responses to the one of the color signal basis
vectors. The first N columns of C,, span the color signals
in the principal illuminant term. The corresponding col-
umns in the matrix @ are the vectors of sensor responses
to these basis vectors. To ensure that all of the color sig-
nals in the principal illuminant term are both detectable
and distinguishable, we require that the first N columns
of @ be independent. The remaining N(M — 1) columns
of C,, span the color signals in the illuminant variation
term. The corresponding columns in the matrix ® are the
vectors of sensor responses to these basis vectors. To en-
sure that the sensors filter the illuminant variation term,
we require that the remaining N(M — 1) columns of ®
be zero.

If the NM columns of C,, are independent and Ny, = N,
then it follows from elementary theorems of linear algebra
that we can find a matrix R of N sensor responsivities that
satisfy (13) for any matrix ®. The ® described above has
the special form that its last N(M — 1) columns are all
zero. In this case we can relax the condition of indepen-
dence of the columns of C,,. The last N(M — 1) columns
of C,, may be linearly dependent on each other. We only
require that the first N columns of C,, be linearly indepen-
dent of each other and that each of the last N(M — 1)
columns of C,, be linearly independent of the first N col-
umns.

Given that C,, satisfies these conditions, we can choose
a @ as described above and solve for the sensor respon-
sivities R using (13). When Ny > N there are many pos-
sible solutions. To restrict the solution, we add additional
linear constraints on R. These constraints restricted the
sensor responsivities in each row of R to be a weighted
sum of NM basis functions. In our computations, NM =
9 and we used basis functions that were all Gaussian func-
tions of wavelength, each centered on a different wave-
length. When we compare our computed sensor respon-
sivities to the human cone responsivities, it is important
to take the effect of our extra linear constraints into ac-
count. A very good fit to the human cone responsivities
is possible using a linear combination of the nine Gaus-
sian basis functions that constrained our sensor responsiv-
ities. The poor fit shown in Fig. 2 is not an artifact of this
choice of basis functions.

It is easy to verify that any R that satisfies (13) for a ®
as described above allows the recovery of the weights «, j
of the principal illuminant term from the vector of sensor
responses. Recall from Section I that the kjth entry of
the matrix that maps the «;; to the r, is given by
T RN, - C,;(A,) . Call this matrix ®,. Comparison
with (13) shows that @, is exactly the first N columns of
the N by NM matrix ®. Since the first N columns of ®
are linearly independent by construction, @, is invertible.
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Matrix multiplication of the vector of sensor responses by
the inverse ®y gives the vector whose entries are the «,;.

Black Illuminants

When a black illuminant is added to the current illu-
mination, there is no change in the vector of sensor re-
sponses for any surface. Because of the linearity of the
relation [(11)] between the response vector r and the il-
luminant vector e, an equivalent definition is that a black
illuminant is an illuminant that generates a zero response
vector when it illuminates any surface, or

0 = RSe = Le. (14)

A vector e satisfies (14) if and only if it is in the null space
of the matrix L,. Whenever N, > P, L; will have a non-
trivial null space.

Black illuminants for an ensemble of surfaces must
simultaneously be black illuminants for each surface en-
countered by the visual system. When the surfaces are
described by an N-dimensional linear model with basis
vectors 5;, j = 1, - - -, N, the vector of sensor responses
to any surface s when illuminated by e is the weighted
sum of the responses to each of the basis vectors s;. Thus,
if e is simultaneously in the null space of the N matrices
L, through L, it will be a black illuminant with respect
to all of the surfaces in the linear model. Let the matrix
L, be the PN by N, matrix formed by stacking the rows
of the N matrices L, through L,,. An illuminant e in the
null space of Ly, is in the null space of L, through L,
and is thus a black illuminant. Whenever N\ > PN, Ly,
will have a nontrivial null space. If we take P = 3, N =
3, and N, = 31, then the dimension of the null space of
L;yis at least 31 — (3 X 3) = 22.

In our computations, we used the singular value decom-
position [29], [30] to find an orthonormal set of basis vec-
tors for the null space of the matrix L. The singular
value decomposition also provides an orthonormal set of
basis vectors for the subspace of visible illuminants. Once
we have the two sets of orthonormal basis vectors, any
illuminant can be decomposed into a black and visible
term by projecting it onto each of the two subspaces.
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