Penn Arts & Sciences Logo

David H. Brainard

Contact
417 Goddard Labs, 3710 Hamilton Walk
215-573-7579

Biography

David H. Brainard is the RRL Professor of Psychology at the University of Pennsylvania.  He received an AB in Physics (Magna Cum Laude) from Harvard University (1982) and an MS (Electrical Engineering) and PhD (Psychology) from Stanford University in 1989.  He is currently the RRL Professor of Psychology at the University of Pennsylvania and his research focuses on color vision, intrinsically photosensitive retinal ganglion cells, retinal imaging, as well as computational models thereof. He is a fellow of the Optical Society, ARVO and the Association for Psychological Science.  At present, he directs Penn's Vision Research Center, co-directs Penn's Computational Neuroscience Initiative, is on the Board of the Vision Sciences Society, and is an Associate Editor of the Journal of Vision.  

Research Interests

The Brainard Lab studies human vision, both experimentally and through computational modeling of visual processing. Our primary concern is with how the visual system estimates object properties from the information available in the light signal incident at the eye. To study this general problem, we conduct psychophysical experiments to investigate questions such as how object color appearance is related to object surface properties under a wide range of illumination conditions and how color is used to identify objects, and formulate computational models of the results. In addition, we are interested in developing machine visual systems that can mimic human performance and in understanding the neural mechanisms of vision.

Representative Recent Publications

(See Publications for more, or download Brainard's CV in PDF Format. Or visit Brainard's Google Scholar Page).

Tuten, W. S., Cooper, R. F., Tiruveedhula, P., Dubra, A., Roorda, A., Cottaris, N. P., Brainard, D. H., Morgan, J. I. W. (2018). Spatial summation in the human fovea: the effect of optical aberrations and fixational eye movements. In press, Journal of Vision. (Preprint available at https://doi.org/10.1101/283119.)  

Brainard, D. H., Cottaris, N. P., Radonjić, A. (2018). The perception of color and material in natural tasks. Royal Society Interface Focus, 8(4), doi: 10.1098/rsfs.2018.0012. (Preprint available at https://doi.org/10.1101/288662.)

Spitschan, M., Bock, A. S., Ryan, J., Frazzetta, G., Brainard, D. H., Aguirre, G. K. (2017). The human visual cortex response to melanopsin-directed stimulation is accompanied by a distinct perceptual experience. PNAS, 114(46), 12291–12296, doi: 10.1073/pnas.1711522114. Download PDF. Press release. [There is a link in the paper to a repository with the raw data. That link turns out to have a finite lifetime. The permalink to the data respository is: https://doi.org/10.6084/m9.figshare.4906727.v12.]

Cooper, R. F., Tuten, W. S., Dubra, A., Brainard, D. H., Morgan, J. I. W. (2017). Non-invasive assessment of human cone photoreceptor function. Biomedical Optics Express, 8(11), 5098-5112, doi: 10.1364/BOE.8.005098. https://www.osapublishing.org/boe/abstract.cfm?uri=boe-8-11-5098. Erratum: Biomed. Opt. Express, 2018,  9, 1842, https://doi.org/10.1364/BOE.9.001842.

Lindsey, D. T., Brown, A. M., Brainard D. H. & Apicella, C. A. (2015). Hunter-gatherer color naming provides new insight into the evolution of color terms.  Current Biology, 25, 2441-2446, doi: 10.1016/j.cub.2015.08.006.  Download PDF.  Press coverage: Science World ReportMedical DailyPhys.org.

Benson, N. C, Manning, J. R. & Brainard, D. H. (2014).  Unsupervised learning of cone spectral classes from natural images.  PLoS Computational Biology, 10(6): e1003652, http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1003652#abstract0, doi:10.1371/journal.pcbi.1003652.  This work is mentioned in this article on the evolution of color vision, in The Scientist.

Preprints (listed until work is published)

5. McAdams, H., Igdalova, A., Spitschan, M., Brainard, D. H., Aguirre, G. K. (2018). Pulses of melanopsin-directed contrast produce highly reliable pupil responses that are insensitive to a change in background radiance. bioRxiv 365718, https://doi.org/10.1101/365718.

4. Singh, V., Cottaris, N. P., Heasly, B. S., Brainard, D. H. Burge, J. (2018). Computational luminance constancy from naturalistic images. bioRxiv 358671, https://doi.org/10.1101/358671.

3. Ding, X., Radonjić, A., Cottaris, N. P., Jiang, H., Wandell, B. A., Brainard D. H. (2018). Computational-observer analysis of illumination discrimination. bioRxiv 302315,  https://doi.org/10.1101/302315.

2. Ruff, D. Brainard, D. H., Cohen, M. R. (2018). Neuronal population mechanisms of lightness perception. bioRxiv 294280, https://doi.org/10.1101/294280.

1. Golden, J. R., Erickson-Davis, C., Parthasarathy, N., Rieke, F., Brainard, D. H., Wandell, B. A., Chichilnisky, E. J. (2018).  Simulation of visual perception and learning with a retinal prosthesis. bioRxiv 206409, https://doi.org/10.1101/206409.

Preregistered Experiments

Here is a link to our list of preregistered experiments.