Penn Arts & Sciences Logo


Welcome to the Brainard Lab

Research Interests

The Brainard Lab studies human vision, both experimentally and through computational modeling of visual processing. Our primary concern is with how the visual system estimates object properties from the information available in the light signal incident at the eye. To study this general problem, we conduct psychophysical experiments to investigate questions such as how object color appearance is related to object surface properties under a wide range of illumination conditions and how color is used to identify objects, and formulate computational models of the results. In addition, we are interested in developing machine visual systems that can mimic human performance and in understanding the neural mechanisms of vision.

Representative Recent Publications

(See Publications for more, or download Brainard's CV in PDF Format. Or visit Brainard's Google Scholar Page).

Spitschan, M., Datta, R., Stern, A. M., Brainard, D. H., Aguirre, G. K. (2016).  Human visual cortex responses to rapid cone and melanopsin-directed flicker.  Journal of Neuroscience, 36, pp. 1471-1482.  Download PDF.

Lindsey, D. T., Brown, A. M., Brainard D. H. & Apicella, C. A. (2015). Hunter-gatherer color naming provides new insight into the evolution of color terms.  Current Biology, 25, 2441-2446, doi: 10.1016/j.cub.2015.08.006.  Download PDF.  Press coverage: Science World ReportMedical

Radonjić A., Cottaris N. P., & Brainard D. H. (2015). Color constancy in a naturalistic, goal directed task.  Journal of Vision, 15(13):3,, doi:10.1167/15.13.3.

Spitschan, M., Jain, S., Brainard, D. H. & Aguirre, G. K. (2014).  Opponent melanopsin and S-cone signals in the human pupillary light response. PNAS, 111(43):15568-72. doi: 10.1073/pnas.1400942111. Epub 2014 Oct 13. release.  Coverage on

Benson, N. C, Manning, J. R. & Brainard, D. H. (2014).  Unsupervised learning of cone spectral classes from natural images.  PLoS Computational Biology, 10(6): e1003652,, doi:10.1371/journal.pcbi.1003652.  This work is mentioned in this article on the evolution of color vision, in The Scientist.

Benson, N. C. Butt, O. H., Brainard, D. H. & Aguirre, G. K. (2014).  Correction of distortion in flattened representations of the cortical surface allows prediction of v1-v3 functional organization from anatomy. PLoS Computational Biology,10(3):e1003538,, doi: 10.1371/journal.pcbi.1003538